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Abstract

We examine the impact of automation on workers’ health risks. We first docu-
ment that automation leads to a divergence in the severity of occupational health risks:
while automation reduces nonfatal occupational injury incidence, it increases fatal in-
jury incidence. Secondly, the disparity of health risks across age groups has widened
due to automation. The overall hospitalizations have declined in commuting zones
with higher automation exposure. Yet, the benefits are concentrated among young
workers, while middle-aged workers experience increased hospitalizations, particu-
larly due to despair-related conditions. Combining the occupational injury estimates,
a back-of-the-envelope calculation suggests that workplace automation provides sig-
nificant, health-driven economic benefits.

Keywords: Automation, Workplace injury, Health Risks, Fatalities, Mental health
JEL Codes: I1; O3; J1

∗Ricardo B. Ang III is a postdoctoral fellow at Tulane University’s Department of Economics and the
Murphy Institute (rang@tulane.edu). Giseong Kim is a Ph.D. student in the Department of Economics at
Georgia StateUniversity (gkim81@gsu.edu). SoojinKim (CorrespondingAuthor) is an assistant professor of
economics at Georgia State University (soojinkim@gsu.edu). Michael F. Pesko is the J. Rhoads Foster Chair
of Economics at the University of Missouri (peskom@missouri.edu). The authors thank Neha Bairoliya,
Garth Heutel, Rihyeon Kang, James Marton, Tom Mroz, Christopher Ruhm, Jonathan Smith, Keith Teltser,
Alejandro del Valle, and participants at various conferences for their valuable feedback. Financial support
was provided by Tom Mroz as Bernard B. and Eugenia A. Ramsey Chair of Private Enterprise at Georgia
State University to purchase the dataset needed for this paper. The authors also appreciate support from
the University of Missouri’s Social Impact Lab. The authors declare that they have no relevant or material
financial interests that relate to the research described in this paper. This paper uses proprietary data from
the International Federation of Robotics and the Nationwide Inpatient Sample of the Healthcare Cost and
Utilization Project. Replication files are available.

1



1 Introduction

Automation is one of the most significant and rapidly growing technological advance-
ments, transforming industries and reshaping labor markets. Since the 1990s, the use
of industrial robots has surged globally. The United States, ranking third worldwide in
robot stocks as of 2022, has seen a dramatic increase in automation, with an eight-fold rise
in robots per manufacturing worker over the past three decades (Acemoglu et al., 2023;
International Federation of Robotics, 2024). This technological development has wide-
ranging effects on workers and their work arrangements, and consequently their health
through various channels. While it may reduce physical burden on workers, it can create
additional, potentiallymore severe risks, both physically andmentally. Further, the effects
may be heterogeneous, if some individuals find it more challenging to adjust to the new
technology.

Given these multifaceted effects of automation, a comprehensive analysis of its impact
on worker health is essential. This paper seeks to provide such an assessment by exam-
ining a range of health outcomes, including nonfatal and fatal occupational injuries, and
hospitalizations by diagnoses. While previous studies have explored some of these issues
(e.g., Gihleb et al. 2022; Gunadi and Ryu 2021; O’Brien et al. 2022), our work is one of
the first studies to measure automation’s impact on fatal occupational injury incidence
and to analyze diagnosis-specific hospitalizations that include both physical and mental
conditions, and their heterogeneous effects.

Our empirical strategy exploits the regional and temporal variations in industrial robot
exposure to identify the health effects of automation. Specifically, we construct a Bartik-
style measure of robot exposure, which captures the intensity of robot adoption weighted
by the industrial composition of local labor markets, using the industrial robot stock data
from the International Federation of Robotics (IFR). To address potential endogeneity con-
cerns, we employ a shift-share instrumental variable (SSIV) approach. Following Ace-
moglu and Restrepo (2020), our SSIV is constructed using pre-automation industry com-
positions in US local labor markets and robot adoption in European countries that were
ahead of the US in robotization. Due to data limitations, our baseline analysis relies on
reduced-form estimation; however, robustness checks, including two-stage least squares
(2SLS) estimates, confirm the consistency of our findings and their implied magnitudes.1

We explore the effects of automation on three outcomes: nonfatal occupational injury
from the Survey of Occupational Injuries and Illnesses (SOII) data; fatal occupational in-

1The IFR contains industry-level robot stock data for European countries starting in 1993, but for the US,
only starting in 2004. A reduced-form approach allows for a longer sample period.
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jury from the Census of Fatal Occupational Injuries (CFOI) data; and diagnosis-specific
hospitalizations from the Nationwide Inpatient Sample (NIS) data of the Healthcare Cost
and Utilization Project (HCUP). As the occupational injury data are reported at the state
level, we construct automation measures at the state level for the first two analyses. For
the hospitalization analysis, we use the hospital county code in the NIS that allows us to
conduct the analysis at the commuting zone (CZ) level. Following the recent literature on
SSIV analyses (e.g., Borusyak et al., 2022), we conduct regional balance tests at the state
and commuting zone levels to validate our empirical approach.

We summarize our findings as follows. First, we find a divergence in the severity of
occupational risks workers face. The analysis of SOII suggests that a 10% increase in robot
exposure decreases nonfatal injury per 1,000 full-time equivalent (FTE) workers by 0.9%,
with the largest decline in injuries involving days of job transfer and restrictions. In con-
trast, the CFOI analysis implies a 1.3% increase in fatal injury per 100,000 FTE workers
from a 10% increase in robot exposure, with particularly large effects among the middle-
aged (45–54) and old (older than 64) workers. Among fatalities by sources, we find sig-
nificant effects from ‘tools, instruments, and equipment’ (e.g., non-powered or powered
hand tools, ladders, equipment) among others, suggesting that robots may indeed be in-
fluencing the outcomes. This finding also aligns with descriptive studies and anecdotal
evidence of fatalities at workplace caused by robots.2 However, our study is the first to
present causal estimates and quantify its magnitude.3 These two workplace injury anal-
yses therefore imply that automation at workplace may have reshaped the severity of oc-
cupational health risks: while automation helped reduce nonfatal injuries, it may have
increased incidence of more serious, fatal injuries.

Second, we find that increased exposure to automation reduces hospitalizations due
to injuries and “despair”-related conditions; however, effects vary by age group, race, and
sex. Consistent with findings from nonfatal occupational injuries, our analysis suggests
that a 10% increase in robots lowers hospitalizations due to injuries by 2.4%.4 In addition,

2For example, Layne (2023) identified 41 robot-related fatalities bymanually reviewing narrative texts in
the CFOI restricted-access research files between 1992 and 2017. Similarly, Kim et al. (2021) found that 6 out
of 203 accidental deaths that occurred during maintenance in the manufacturing industry in South Korea
between 2014 and 2018 were caused by robots. Additionally, there have been reports of worker deaths by
industrial robots at an automotive factory in Texas (Ivanova, 2023) and at a vegetable packaging company
in South Korea (Kim, 2023).

3Li and Singleton (2023) studies fatalities, using data from Occupational Safety and Health Adminis-
tration (OSHA) inspections of work-related fatalities or hospitalizations. However, OSHA inspections only
cover accidents that result in fatalities or hospitalizations of three or more employees. Thus, the data does
not provide a comprehensive count of worker fatalities.

4NIS does not report whether the incident occurred at workplaces. Since most employed individuals
are insured by employer sponsored health insurance (particularly more so, during our sample period, pre-
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we find reduced hospitalizations frommental disorders and “despair”-realted conditions
à la Case and Deaton (2017) (e.g., alcohol and substance abuses). These aggregate ef-
fects, however, mask a large heterogeneity across worker demographics. For various di-
agnoses, from physical injuries to mental health conditions, we find that the benefits of
automation are concentrated among young workers, while those over 45, white, and male
workers tend to be adversely affected. Notably, the negative mental health impacts for
these groups align with Albinowski and Lewandowski (2024), who find that automation
disproportionately reduces labor demand for older workers. These findings suggest that
automation has widened the disparity in health risks—both physical and mental—across
worker demographics, particularly among different age groups. The age-specificity is also
present in fatal workplace injuries, as discussed earlier.

The occupational injury analyses reveal opposing effects of automation on health risks.
We integrate these estimates to conduct a back-of-the-envelope calculation, quantifying
the net health benefits or costs of automation at workplaces. Between 1996 and 2010, our
estimates imply an annual decrease of approximately 33,000 nonfatal injuries, amounting
to $1.9 billion (2023 USD) in savings, based on value of statistical injury estimates. On the
other hand, worker fatality increased by 42 annually, that result in between $262 and $516
million in losses based on estimates of the value of statistical life. These together imply
that automation had net economic health benefits at workplaces, but that the burden of
fatal injuries offsets between 14% and 27% of the nonfatal injury benefits.

Our empirical findings highlight the need for policies that aim at preventing work-
place injuries, particularly severe and fatal ones. Enhancing safety training to keep pace
with rapidly-evolving technology would be a crucial preventive measure for both workers
and firms. On the worker side, expanding social insurance programs, such as Workers’
Compensation program, to help support workers suffering from both physical andmental
health conditions may also be welfare-improving.

Related Literature. This paper contributes to the extensive literature on the effects of
automation. Numerous studies have examined how automation affects various outcomes
such as employment and wages (e.g., Acemoglu and Restrepo, 2020), labor productivity
(e.g., Graetz and Michaels, 2018), crime (Liang et al., 2025) and family behaviors (e.g.,
Anelli et al., 2021).

Recently, there has been a growing body of work focusing on health outcomes of au-

dating the Affordable Care Act), we check the effect among those whose primary payer is private. The
estimated effect of automation is significant at 1.9% in the subsample. Further, we discuss in Section 4.4 that
quantitative magnitudes from occupational injuries and injury-driven hospitalizations are comparable.
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tomation (e.g., Gunadi and Ryu, 2021; Gihleb et al., 2022; Liu et al., 2024b; Lu and Fan,
2024). We complement this literature in several ways. First, our paper is among the first to
examine the impact of automation on fatal workplace injuries. A related study by O’Brien
et al. (2022) examines mortality outcomes and their causes using death certificate data
from the US National Center for Health Statistics.5 While their analysis provides insights
into the impact of automation on a range of mortality causes, the data’s ability to directly
linkmortality toworkplace incidents is limited—agap that ourwork addresses. Ourwork,
alongwith previous studies such as Gihleb et al. (2022), demonstrates a decrease in nonfa-
tal workplace injuries due to automation. Relatedly, Li and Singleton (2023) finds positive
but statistically insignificant effect of automation on workplace fatalities. Their analysis,
however, is based on OSHA inspections data, which only include fatalities from accidents
involving three or more employees in an establishment. Thus, the data undercounts work-
place fatalities. The novel finding of increased fatal occupational injuries, despite a reduc-
tion in nonfatal injuries, highlights the need to assess the impact of automation on broader
spectrum of injury severity. Second, we evaluate the effects on diagnosis-specific hospital-
izations, which provides a more objective measure of health outcomes than self-reported
health status (e.g., Gunadi and Ryu, 2021; Liu et al., 2024b), and a less drastic outcome
relative to e.g., mortality (e.g., O’Brien et al., 2022).6 In these analyses, we further un-
cover varying effects of automation across worker demographics, an aspect that previous
studies have not explored.

Our paper also speaks to the large literature on the health consequences of exposure
to economic shocks. In addition to studies on industrial robot adoption, there have been
papers that examine the health effects of recessions (e.g., Ruhm 2000; Hollingsworth et al.
2017), job loss (e.g., Eliason and Storrie 2009; Kuhn et al. 2009; Sullivan and von Wachter
2009; Browning and Heinesen 2012; Ahammer et al. 2023), and trade shock (Autor et al.,
2019; Lang et al., 2019; Adda and Fawaz, 2020; Pierce and Schott, 2020; Lai et al., 2022; Kim
et al., 2024). We contribute to this strand of literature by providing new evidence regard-
ing the effects of major technology and labor market shocks on health. While automation
shares some characteristics with other shocks like import competition, it also uniquely
offers the potential to support workers in completing specific tasks, thus potentially mit-

5O’Brien et al. (2022) shows that automation is associated with an increase in deaths due to drug over-
dose and suicide among those aged 45–54. On a similar note, Gihleb et al. (2022) also finds an increase
in drug- or alcohol-related mortality from Behavioral Risk Factor Surveillance System (BRFSS). These re-
sults are consistent with our finding: increased hospitalizations due to despair-related conditions among
middle-aged workers.

6Gunadi and Ryu (2021) finds an improvement in self-reported health and a reduction in disability
among low-skilled individuals.
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igating the negative consequences from worker displacement documented in Acemoglu
and Restrepo (2020). Our estimates on various outcomes capture these diverse channels
through which automation impacts workers’ health risks.

Lastly, this paper relates to studies on determinants ofworkplace safety. Previous stud-
ies have examined the effects of various factors, including workers’ compensation (e.g.,
Ruser 1985; Moore and Viscusi 1989; Krueger 1990; Johnson et al. 2024), minimum wage
(Davies et al., 2024; Liu et al., 2024a), import competition (McManus and Schaur, 2016),
labor unions (Li et al., 2022) and firms’ financing constraints (Cohn and Wardlaw, 2016).
Our study extends this literature by highlighting the impact of technological change on
workplace injuries.

The rest of the paper is organized as follows. In Section 2, we describe data sources
we use in this study. Section 3 discusses the measure of robot exposure and the empirical
strategy. Section 4 presents the results on nonfatal and fatal injuries and hospitalizations,
followed by discussions of the quantitative and policy implications of our findings in Sec-
tion 5.

2 Data

In this section, we outline the data sources, beginning with the automation data and
datasets for three outcome variables: nonfatal injuries, fatal injuries, and hospitalizations.
We then provide descriptive statistics of outcome variables.

2.1 Industrial Robots: IFR

An industrial robot is defined by International Federation of Robotics (IFR) as “an auto-
matically controlled, reprogrammable, multipurposemanipulator programmable in three
or more axes, which can be either fixed in place or mobile for use in industrial automation
applications.” We use data on industrial robot stock provided by the IFR, which collects
this information directly from nearly all major industrial robot producers and national
robotics associations.

The IFR data covers over 50 countries from 1993 to 2017 and includes the operational
stock of robots, defined as “the number of robots currently deployed,” for each coun-
try and year. The dataset provides information on robot stock across seven broad sec-
tors: agriculture, forestry, and fishing; mining and quarrying; manufacturing; utilities;
construction; education, research, and development; and other services (all other non-
manufacturing branches, such as wholesale and retail trade; accommodation and food
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service; and financial services). Within the manufacturing sector, data are available for 13
more detailed subsectors: food and beverages; textiles (including apparel); wood and fur-
niture; paper and printing; plastics and chemicals; minerals; basic metals; metal products;
industrial machinery; electronics; automotive; shipbuilding and aerospace; and miscella-
neous manufacturing.7 Throughout the paper, we refer to this sector classification as the
“IFR industries.”

The industry-level robot stock data in the 1990s are available only for Denmark, Fin-
land, France, Germany, Italy, Norway, Spain, Sweden, and the United Kingdom. For the
United States, industrial-level data are available starting from2004, while total robot stocks
are available from 1993 onward. Due the data limitation, we utilize the industry-level Eu-
ropean robot stocks in earlier years to conduct our empirical analysis, as we discuss in
Section 3.

2.2 Nonfatal Workplace Injuries: SOII

We use state-level data on nonfatal workplace injuries from the Survey of Occupational
Injuries and Illnesses (SOII), provided by the Bureau of Labor Statistics (BLS). The SOII
data is available from 1995 to 2022, but lacks information for six states: Colorado, Idaho,
Missouri, New Hampshire, North Dakota, and South Dakota. Additionally, for specific
years, data is unavailable for eleven additional states and the District of Columbia.8 For
the analysis of both nonfatal and fatal occupational injuries, we use a balanced panel of 33
states.9 As demonstrated in Appendix A.2, the states included in our baseline sample do
not exhibit substantial differences in key characteristics compared to the full set of states.

The data covers work-related injuries or illnesses requiring medical treatment beyond
basic first aid.10 It is based on employers’ annual reports submitted to the BLS, which
include information on work-related injuries and illnesses, average annual employment,
and the total hours worked by all employees. The data contains both the number and rate
of incidence, with the incidence rate defined as the number of injuries per 100 full-time

7Approximately 30% of robots are not assigned to a specific industry. Following the approach of Ace-
moglu and Restrepo (2020), we allocate the unclassified robots to industries in proportion to the classified
ones to address this issue.

8The missing states (years) are: Arizona (1995), District of Columbia (up to 2003), Florida (2011 on-
wards), Illinois (up to 1997), Massachusetts (2009), Ohio (up to 2011), Pennsylvania (up to 2010), Rhode
Island (2008 onwards), South Carolina (1995), Vermont (up to 1996), West Virginia (up to 1997), and
Wyoming (up to 2001).

9Including all available states does not affect our results, as shown in Appendix A.3.
10It excludes work-related fatalities, nonfatal injuries and illnesses involving self-employed individuals,

workers on farms with 10 or fewer employees, private household workers, volunteers, and federal govern-
ment employees.
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equivalent (FTE) workers. The injuries are classified into several types: cases with days
away fromwork (DAWF), cases with days of job transfers or restriction (DJTR), and cases
without lost workdays (other recordable cases). When a case involves both DAFW and
DJTR, the case is recorded as DAWF. Other recordable cases involve medical treatment
beyond first aid but not DAFW or DJTR.

2.3 Fatal Workplace Injuries: CFOI

State-level data on fatal injuries is from the Census of Fatal Occupational Injuries (CFOI).
BLS collects this data using various sources such as death certificates, newsmedia reports,
workers’ compensation reports, and OSHA reports. The CFOI dataset spans from 1992 to
2021 and includes all 50 states and the District of Columbia. For consistency with our
analysis of nonfatal injuries, we focus on a balanced panel of 33 states.

Fatal injuries are only available as counts, unlike nonfatal injuries, which are reported
both as counts and rates. For comparability across states, we construct a measure of fatal
injuries per 100,000 FTE workers, in a way similar to the BLS methodology for calculating
nonfatal injury rates. This measure is derived using state-level total hours worked data,
calculated from the monthly Current Population Survey.11

The dataset also provides the source of fatal injury in eight categories: chemicals; con-
tainers and furniture; machinery; parts and materials; tools; structures and surfaces; per-
sons, animals, and plants; vehicles (see Table A.1 for details and examples). Additionally,
the injury statistics by age groups, race, and sex are available.

2.4 Hospital Discharge by Diagnoses: HCUP NIS

Weuse hospitalization data for years 1993 to 2011 obtained from theNationwide Inpatient
Sample (NIS) of the Healthcare Cost and Utilization Project (HCUP) from the Agency for
Healthcare Research and Quality (AHRQ). The NIS is the “largest publicly available all-
payer inpatient care database in the United States, containing data on more than seven
million hospital stays” (AHRQ, 2024). It includes all discharges from a 20% random sam-
ple of US community hospitals, drawn each year from each stratum.12 During the sample

11Specifically, the state fatal injury rates are calculated as (Nst/EHst)×2, 000×100, 000whereNst denotes
the number of fatal work injuries, and EHst represents the total hours worked by all employees in state s
and year t. 2, 000× 100, 000 represents the base for 100,000 FTE workers, assuming they work 40 hours per
week for 50 weeks in a year.

12The strata are defined by geographic region (Northeast, Midwest, West, and South), hospital control
(public, private not-for-profit, and private investor-owned), location (urban and rural), teaching status, and
bed size. Due to this sampling scheme, aggregating hospitalizations at geographic levels lower than these
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period, the data includes 31 states.13 We show that commuting zones in our sample do
not exhibit statistically significant differences in their characteristics relative to all states in
Appendix A.2.

This dataset provides detailed information on patients such as their underlying condi-
tions by ICD-9-CM (International Classification of Diseases - 9th revision - Clinical Mod-
ification) code, age, sex, and median income based on the patient’s ZIP Code. It also
includes hospital information, such as hospital identifiers, county code, ownership, and
(categorized) bed size. The availability of hospital county code is crucial for our analy-
sis as we utilize the regional variation in automation exposure to estimate its effects on
hospitalizations.14

As we are interested in the effects of automation in workplaces, we restrict our sam-
ple to discharges of individuals in the working age, between the ages of 18 and 65. Sub-
sequently, we calculate the number of discharges for each condition in cells defined by
cohort, sex, and hospital, using discharge weights provided by HCUP.15

2.5 Descriptive Statistics of Outcome Variables

For our analysis, we restrict sample years to 1996 through 2010 for consistency across out-
come variables. The descriptive statistics for the outcome variables are documented in
Tables 1 and 2 for injuries and discharges, respectively.

In Table 1, we report statistics for nonfatal and fatal injuries—the mean, standard devi-
ation and the 25th, 50th, and 75th percentiles of the distributions—spanning 1996 to 2010
(15 years) across 33 states in our sample. The average nonfatal injuries is around 5 per
100 FTE workers, with about half of them not involving any lost workdays. The other half
of the injuries are categorized as requiring job transfers or restrictions, or days away from
work. For fatal injuries, the average is about 4 in 100,000 FTE workers and their sources
vary, with the largest share from vehicles. The age and sex differences in injury incidence
rates are also significant: the male incidence is higher, and older individuals, specifically

regions does not necessarily yield representative estimates.
13NIS does not contain data for nine states (Alabama, Arkansas, Delaware, District of Columbia, Idaho,

Louisiana, NewMexico, Oklahoma, andWyoming). Additionally, we cannot use 11 states (Georgia, Hawaii,
Indiana, Kansas, Michigan, Nebraska, Ohio, South Carolina, South Dakota, Tennessee, and Texas) due to
the absence of detailed geocodes (zip codes or county FIPS codes).

14The discharge data is also available post-2012 and is referred to as the National Inpatient Sample. Start-
ing in 2012, however, HCUP changed the sampling methodology. Instead of sampling hospitals (where all
hospitalizations from sampled hospitals were included), they began sampling discharges directly. This shift
means that post-2012 data no longer allow for hospital-level aggregates of hospitalizations. Thus, we limit
the NIS sample to data from 2011 and earlier.

15The cohort is grouped by birth years: before 1940, the 1940s, 1950s, 1960s, and 1970 or later.
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Table 1: Summary Statistics of Nonfatal and Fatal Injuries

Mean SD P25 P50 P75
Nonfatal injury (per 100 FTE workers) 5.16 1.66 3.90 4.90 6.10
by type w/o lost workdays 2.56 0.99 1.80 2.30 3.10

w/ days of transfer/restriction 1.06 0.45 0.80 1.10 1.30
w/ days away from work 1.54 0.47 1.20 1.50 1.80

Fatal injury (per 100,000 FTE workers) 4.35 1.63 3.01 4.18 5.32
by source Tools, instruments & equipment 0.07 0.08 0.00 0.08 0.11

Machinery 0.34 0.19 0.20 0.30 0.46
Parts & materials 0.28 0.16 0.19 0.25 0.36
Chemicals & chemical products 0.08 0.10 0.00 0.08 0.12
Vehicles 1.91 1.01 1.22 1.76 2.34
Containers 0.04 0.06 0.00 0.00 0.06
Structures & surfaces 0.62 0.23 0.49 0.59 0.72
Persons, plants, animals & minerals 0.20 0.17 0.10 0.15 0.27

by age 24 and younger 3.66 1.81 2.58 3.44 4.57
25-34 3.37 1.66 2.32 3.21 4.17
35-44 3.64 1.59 2.64 3.40 4.40
45-54 4.12 1.78 2.89 3.90 5.09
55-64 5.58 2.69 3.68 5.09 6.93
65 and older 16.18 10.41 8.75 13.52 21.02

by race White 4.33 1.70 2.94 4.10 5.36
Non-white 4.50 2.90 3.10 4.08 5.33

by sex Male 6.99 2.62 4.84 6.72 8.46
Female 0.76 0.42 0.49 0.68 0.95

Observations 495

Note: The nonfatal injury data is from the SOII, and the fatal injury data is from the CFOI. The sample
is for 33 states and years 1996-2010, and statistics are weighted by state employment.

those older than 55, have higher incidence rates.
Table 2 presents summary statistics on hospital discharges by diagnoses that are likely

to be influenced by automation either physically (e.g., injury and backaches) or mentally
(e.g., substance and opioid abuse).16 The data contains hospitals of various sizes, with
25th and 75th percentiles of admissions at 2,700 and 27,000, respectively. The average dis-
charges from injuries are relatively fewer than those from mental disorders or “despair”-
related diseases, as defined in Case and Deaton (2017) that include alcohol, substance,
and opioid abuses, and suicide attempts.

16The mapping between diagnoses and ICD-9-CM codes and summary statistics of discharges by other
diagnoses (e.g., neoplasm and heart problems) are included in Appendix A.1.
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Table 2: Summary Statistics of Hospitalization: Discharges by Cause (per Hospital)

Mean SD P25 P50 P75
All admissions 20,002.9 25,677.5 2,719.9 10,865.1 27,453.8

by diagnosis Injury 767.6 1,394.5 69.8 324.6 775.7
Backache 76.2 156.6 0.0 15.8 83.9
Mental disorders 5,937.0 8,294.4 538.0 2,749.4 7,978.3
Despair-related 3,430.4 6,109.5 192.5 1,099.7 4,095.0

Alcohol abuse 1,452.4 2,327.1 109.8 552.1 1,877.2
Substance abuse 1,220.5 2,470.5 33.8 270.0 1,303.5
Opioid abuse 485.9 1,264.8 11.9 89.0 397.2
Suicide attempt 271.5 395.8 19.7 123.9 358.2

Observations 9,950

Note: The data is from the 1996-2010 NIS. This table presents summary statistics on patient dis-
charges at the hospital level, restricted to individuals aged 18 to 65 and weighted by discharge
weights.

3 Empirical Analysis

Our empirical strategy is to utilize regional variations in automation exposure to estimate
the health effects. In this section, we first discuss how we measure the exposure to indus-
trial robots. Depending on the available data for outcome variables, we consider robot
exposure measures at different geographic levels: a state-level measure for the occupa-
tional nonfatal and fatal injury analyses, and a commuting-zone (CZ)-level measure for
the hospitalization analyses. We then specify the estimating equation and present regional
balance test results to check the validity of our approach.

We construct a Bartik-style measure of robot exposure, representing the intensity of
robot adoption weighted by the regional industrial composition as follows:

RobotUS
rt =

∑
i∈Manuf

`US
irt ·

MUS
it

LUS
it

(1)

where `US
irt is industry i’s share in total employment of region r in year t. MUS

it and LUS
it

are robot stocks and total employment in industry i in the US in year t (in 1,000 work-
ers), respectively.17 Thus, the measureMUS

it /L
US
it captures the intensity of robot adoption

17To compute `US
irt and LUS

it , we use the monthly Current Population Survey (CPS; Flood et al., 2024) for
the state-level measure and the County Business Pattern (CBP) for the CZ-level measure. We rely on the
version of the CBP data processed by Eckert et al. (2020) due to the suppression of small industry-county
cells in the original CBP data.
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in industry i, and RobotUS
rt reflects the exposure of region r to automation weighted by

the industry’s share in the region’s employment. The region with a higher concentration
of employment in robot-intensive industries is assigned a higher value of this measure,
indicating greater exposure to automation.

Using the robot exposures, we investigate the effects of industrial robots on occupa-
tional injuries at the state level by estimating the following equation:

yst = δ0 + β · RobotUS
st + δX ·Xst + δs + δt + εst, (2)

where yst represents workplace injuries (per 100 FTEworkers for nonfatal and per 100,000
FTE workers for fatal injuries) in state s in year t. The automation exposure is captured
by RobotUS

st and our coefficient of interest is β. We include δs and δt that capture state- and
year-fixed effects, respectively, and a vector of control variables, Xst. These include state
demographic characteristics, such as the share of sex, race, and age groups, andmacroeco-
nomic characteristics such as the unemployment rate, shares of manufacturing and light
manufacturing in employment, and the share of females in employment.18 Additionally,
we include a Bartikmeasure of exposure to imports fromChina at the state level, as defined
in Autor et al. (2013) to control for potential confounding effects of trade competition, as
previous studies report its detrimental effects on workplace injuries (Lai et al., 2022). We
cluster standard errors at the state level.

Next, to examine the effects of robot exposure on hospitalization at the CZ level, we
estimate the following model:

yahct = δ0 + β · RobotUS
ct + δX ·Xct + δa + δh + δt + εahct, (3)

where yahct denotes the log number of hospitalizations plus one for cohort × sex cell a in
hospital h, located inCZ c in year t. RobotUS

ct represents robot exposure inCZ c in year t. We
control for fixed effects of cohort-by-sex cells δa, hospitals δh, and years δt; and the vector
Xct includes time-varying CZ-level controls, analogous to the variables used in the state-
level regressions. In addition, Xct includes (log) population to account for any change in
population over time, as our outcome variable is the number of hospitalizations.19 Stan-
dard errors are clustered at the CZ level.

18Lightmanufacturing industries include textile, and paper and printing industries. The summary statis-
tics of state and commuting-zone level characteristics and their descriptions are relegated to Appendix A.2.

19Due to HCUP’s sampling scheme mentioned in footnote 12, we are not able to construct a consistent
measure of hospitalization rates (e.g., hospitalizations per population) for CZs or states.
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Identification. Using the robot exposure measure defined in Equation (1) to estimate its
health effects, however, may be subject to reverse causality or omitted-variable biases, as it
may be correlatedwith unobserved shocks or characteristics in a region thatmay affect the
labor market and health outcomes. For example, regions with high fatal injury rates may
be more likely to adopt robots as a means to improve workplace safety. To address this
endogeneity issue, we employ a shift-share instrument, followingAcemoglu and Restrepo
(2020). Specifically, we construct the instrument using 1970 industry shares in the US and
the average robot adoption of five European countries—Denmark, Finland, France, Italy,
and Sweden (referred to as “EURO5”)—which exhibit higher robot adoption than the US.
This approach captures variation driven by global technological advancements in robotics,
which are not likely to be affected by economic or policy conditions specific to the US.20

The shift-share instrument is defined as follows:

RobotIVrt =
∑

i∈Manuf

`US
ir,1970 ·

(
1

5

∑
j∈EURO5

M j
it

Lj
i,1970

)
. (4)

The variables M j
it and Lj

i,1970 measure country j’s the robot stock and total employment
in industry i in years t and 1970, respectively.21 The term `US

i,r,1970 measures the industry
employment share in 1970 in region r, derived from the Census data (Ruggles et al., 2024).
The second term, the average robot adoption of five European countries for each IFR in-
dustry relative to the 1970 employment, represents the set of shifters (or shocks). We show
in Figure A.2 (Appendix A.1) that EURO5 robot adoption is closely associated with US
robot adoption at the industry level, with an R-squared of 0.8, mitigating concerns about
a weak instrument.22

The recent shift-share instrument literature highlights that identification in shift-share
designs depends on the exogeneity of either the shocks or the shares (Goldsmith-Pinkham
et al., 2020; Borusyak et al., 2022). In our context, the shocks—robot adoption in European
countries—are arguably orthogonal to unobservable local factors impacting industry-level
robot adoption, as they capture variationdriven by global technological advances in robotics.
More advanced and cost-effective robots would lead to increased adoption in both Eu-
rope and the US, while European adoption would remain unaffected by the US-specific
economic or policy factors. Additionally, the industry’s share of employment in 1970 in

20Germany is excluded as its robot adoption is far ahead of the US, potentially making it less relevant
(see Figure A.1). Similarly, Norway, Spain, and the UK are not included, as their robot adoption lags behind
that of the US.

21The employment data for European countries is from EU KLEMS (O’Mahony and Timmer, 2009).
22While we use robot stocks in five European countries as the baseline following Acemoglu and Restrepo

(2020), Tables 7 and 8 show that our findings are robust to using an alternative choice of countries.
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a region is also exogenous. Since it predates US robotization, the 1970 industry employ-
ment share is unlikely to correlate with current local shocks that affect workplace safety
and hospitalizations.

In constructing the IV, we restrict the set of shares to manufacturing industries for the
following reasons. First, the IFR data includes robot stocks classified by two-digit manu-
facturing industry codes, enabling a more precise measurement of automation at a disag-
gregated industry level. Second, an additional identification condition in shift-share de-
signs is that the inverse normalized Herfindahl-Hirschman Index (HHI) of average shock
exposure should be sufficiently large; equivalently, the normalized HHI should be close
to zero (Borusyak et al., 2022). Specifically, the inverse normalized HHI is expressed as
1/
∑

it(
ˆ̀US
i,1970)

2, where ˆ̀US
i,1970 is derived by normalizing `US

i,1970 to sum to one across industries
and years. In our case, the other services in IFR industries accounts for 56% of 1970 em-
ployment, yielding an inverse HHI of 45. To address this, we exclude this sector, resulting
in an inverse HHI of 168.23

In Figure 1, we map robot exposures as measured by Equation (4) at the commuting-
zone level for years 1996, 2000, 2005, and 2010. There are both large temporal and geo-
graphical variations in automation exposure. Across commuting zones (states), the aver-
age robot stocks in our sample is 1.49 (1.74) per 1,000 workers with the standard deviation
of 0.89 (1.42) and the median of 1.32 (1.45). While the averages are similar across com-
muting zones and states, the standard deviation is larger in the state-level data, reflecting
greater variability across states thanmore localized commuting zones. During our sample
period, robot stocks increased by 1.15 per 1,000 workers on average, which translates to a
6.42% annual growth rate.

In our baseline analyses, we estimate reduced-form regressions of outcomes on the in-
strumental variable. Since detailed industrial robot data for theUS before 2004 are unavail-
able in the IFR dataset (as noted in Section 2), the exposure measure defined in Equation
(1) is restricted to the post-2004 period. However, limiting the sample to 2004 and later
substantially reduces statistical power (particularly for state-level analyses of occupational
injuries). At the same time, estimating two-stage least squares (2SLS) over a longer pe-
riod would require making a strong assumption to impute the pre-2004 US robot stock. To
avoid this, we follow Acemoglu and Restrepo (2020) and report reduced-form estimates
as our baseline. As robustness checks, we show that alternative estimations and specifica-
tions, including 2SLS estimates using post-2004 data, produce results consistent with our
main findings, both quantitatively and qualitatively.

23We perform robustness analyses on this choice in Section 4.4. As shown in Tables 7 and 8, including all
sectors in the construction of the robot measure and instrument does not impact our results.
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Robot exposure in 1996 Robot exposure in 2000
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Robot exposure in 2010

Figure 1: Robot Exposures

Note: This figure presents the CZ-level robot exposure measures, as defined in Equation (4), for years 1996,
2000, 2005, and 2010.

Regional Balance Tests. Before discussing the main results, we conduct regional bal-
ance tests, as suggested by Borusyak et al. (2022), to examine whether our instrument is
correlated with preexisting trends in the outcomes. A significant estimate would imply
that regions more exposed to robot adoption between 1996 and 2010 might have already
been experiencing differential trends in workplace injuries and hospitalizations between
1993 and 1996. Specifically, for workplace injuries, we regress changes in outcomes (in
levels and percents) from 1993 to 1996 on changes in the IV (in levels and percents) from
1996 to 2010 at the state level. We conduct analogous analysis for hospitalization data at
the CZ-level.24

Table 3 reports the results of our regional balance tests. Under both measures, we find
no evidence that the shift-share instrument is systematically associated with pre-period

24Since we are unable to construct a measure of CZ-level hospitalizations (see footnote 12), we adopt
the following approach. We first calculate the per-hospital number of condition-specific hospitalizations for
each CZ and year. Next, for each CZ, we compute annual changes in hospitalizations between the first and
last years of the pre-period in which data is available since data is not available for every CZ in all years. We
then regress these changes on changes in the IV between 1996 and 2010.
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Table 3: Regional Balance Test of Outcomes

Change in Robots, 1996-2010

(1) Level (2) Percent
Coefficient (Standard Error) Coefficient (Standard Error)

Panel A: Workplace injury, change in outcomes 1993-1996
Nonfatal injury 0.062 (0.078) -0.002 (0.033)
Fatal injury 0.027 (0.086) -0.078 (0.077)
Observations 33 33

Panel B: Hospitalization, change in outcomes 1993-1996
Total admissions -1.016 (1.024) -0.035 (0.037)
Injury –0.061 (0.057) -0.038 (0.049)
Backache -0.003 (0.003) 0.016 (0.037)
Mental disorders -0.023 (0.236) -0.036 (0.050)
Despair-related 0.134 (0.213) 0.002 (0.067)

Alcohol abuse -0.006 (0.080) -0.023 (0.074)
Substance abuse 0.098 (0.089) 0.020 (0.081)
Opioid abuse 0.053 (0.044) 0.045 (0.055)
Suicide attempt -0.012 (0.017) 0.125∗ (0.074)

Observations 179 179
Note: The data for Panel A is fromSOII andCFOI, and for Panel B,HCUPNIS. This table presents coefficients
from regressions of pretrends in the outcomes on the shift-share instrument. The unit of observation is the
state in Panel A and the CZ in Panel B. We control for the sum of exposure shares,

∑
i∈Manuf `

US
i,s,1970, in

Panel A, and for the sum of CZ-level exposure shares interacted with indicators for the first and last years
of the pre-period in which CZs are observed in Panel B, following Borusyak et al. (2022). All regressions
are weighted by the population of the first pre-period year in the sample. Robust standard errors are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

outcomes, except for suicide attempts, which supports causal interpretation of our esti-
mates.

4 Results

We now discuss the estimated effects of automation on nonfatal and fatal workplace in-
juries, and hospitalizations.
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4.1 Automation and Nonfatal Occupational Injuries

In Table 4, we report the effects of automation on nonfatal injury incidence per 100 FTE
workers. Wepresent resultswith state and year fixed effects in column (1) and addvarious
sets of state-level controls including demographic characteristics (column (2)), macroe-
conomic conditions (column (3)), and exposure to trade shock measured by import pen-
etration per worker (column (4)). The mean of the outcome variable is also reported for
ease of quantifying the effects.

Table 4: Automation and Nonfatal Workplace Injuries (per 100 FTE Workers)

(1) (2) (3) (4) Mean
All nonfatal injuries -0.454∗∗∗ -0.407∗∗∗ -0.242∗∗ -0.261∗∗∗ 5.160

(0.078) (0.090) (0.089) (0.086)
Nonfatal injuries by type
Injury w/o lost workdays -0.214∗∗∗ -0.190∗∗∗ -0.100 -0.110∗ 2.560

(0.056) (0.063) (0.060) (0.059)
Injury w / days of -0.196∗∗∗ -0.178∗∗∗ -0.146∗∗∗ -0.148∗∗∗ 1.059

job transfer or restriction (0.025) (0.029) (0.028) (0.026)
Injury w / days away from work -0.039 -0.042 -0.016 -0.023 1.542

(0.026) (0.028) (0.028) (0.027)

Demographics X X X
Macroeconomic controls X X
Import penetration X
States 33 33 33 33
Observations 495 495 495 495
Note: The data is from the 1996-2010 SOII. This table presents estimates of the effects of industrial robot
exposure on nonfatal injury incidence per 100 FTE workers. All regressions are weighted by the state
employment. Standard errors clustered at the state level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01

We find that robot exposure led to a statistically significant decrease in nonfatal injury
incidence, with its effects robust to adding various state-level demographic and economic
controls. Our preferred specification in column (4) implies that a 10% increase in robot
exposure from the mean (0.17 robots per 1,000 workers) decreases nonfatal injury rate by
0.9% (0.17×(-0.261)/5.160). Among nonfatal injuries, those involving days of job transfer
and restriction have decreased the most at 2.4%.25 These findings align qualitatively with

25While we investigate fatal injuries and hospitalizations across age, race, and sex, the available data on
nonfatal injuries are insufficient for heterogeneity analyses.
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prior literature; for example, Gihleb et al. (2022) report a 2.1% reduction in occupational
injuries associated with a 10% increase in robot exposure, using on the OSHAData Initia-
tive for 2005–2011. Our results complement and further corroborate the beneficial effect
of automation in reducing nonfatal injuries at workplace.

4.2 Automation and Fatal Occupational Injuries

Now, we turn to the effects of automation on fatal injury incidence at workplace. In Ta-
ble 5, we present the effects on all fatal injuries per 100,000 FTE workers under various
specifications consistent with those for nonfatal injury analysis. Across all specifications,
we find that fatal injury incidence has increased due to automation with its coefficients
ranging between 0.136 (column(2)) and 0.332 (column(4)). These effects translate into
0.02 (0.5%) and 0.06 (1.3%) more fatalities per 100,000 FTE workers due to a 10% increase
in industrial robots.

There are several pathways in which automation may impact fatal injury incidence.
The industrial robots could directly harm workers, as evidenced by incidents from an au-
tomobile factory where a factory robot attacked a worker (Ivanova, 2023), and a vegetable
packaging plant where a robot crushedworker to death (Kim, 2023). On the other hand, if
robots allowworkers to avoid engaging in more dangerous or harmful tasks, it could have
positive effects on fatal injury incidence. To further investigate the underlying causes of
fatality, we utilize the source of injury data from the CFOI. CFOI categorizes fatal injuries
into eight sources, as listed in Table 5, with detailed definitions and examples of each
source in Appendix A.1.

Among them, “tools, instruments, and equipment” includes non-powered or pow-
ered hand tools, ladders, equipment (e.g., protective), and instruments (e.g., surgical);
whereas “machinery” includes light and heavy machinery that are capable of motion and
are contained in a stationary frame. As industrial robots may be “either fixed in place or
mobile for use,” robot-related injuries likely fall into either of these categories. While we
do not find a significant effect of automation on injuries involving machinery, we do ob-
serve a statistically significant increase in fatal injuries related to tools, instruments, and
equipment: a 10% increase in automation leads to a 3.5% rise in fatal injuries from tools,
instruments, and equipment. Additionally, robot-involved fatalities can be recorded as
caused by “vehicles”, specifically for example, powered off-road and industrial vehicles,
according to Layne (2023).26 We also find a significant effect from vehicles-induced fatal-

26Layne (2023) conducted a keyword search (e.g., robot, bionic, autonomous) in incident reports and
found that fatalities explicitly recorded as robot-involved are classified under either machinery or vehicles
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Table 5: Automation and Fatal Workplace Injuries (per 100,000 FTE Workers)

(1) (2) (3) (4) Mean
All fatal injuries 0.177∗ 0.136 0.295∗∗ 0.332∗∗ 4.354

(0.089) (0.097) (0.130) (0.123)
Fatal injuries by source
Tools, instruments, and equipment 0.013 0.011∗∗ 0.015∗∗ 0.015∗∗ 0.074

(0.008) (0.005) (0.006) (0.007)
Machinery -0.013 -0.015 0.000 0.004 0.341

(0.016) (0.019) (0.025) (0.024)
Vehicles 0.131∗∗ 0.098 0.179∗∗ 0.195∗∗ 1.912

(0.053) (0.063) (0.070) (0.075)
Parts and materials 0.007 0.009 0.004 0.010 0.280

(0.008) (0.011) (0.015) (0.015)
Containers -0.008 -0.011∗∗ -0.001 -0.002 0.038

(0.007) (0.005) (0.008) (0.008)
Structures and surfaces 0.015 0.015 0.022 0.025 0.615

(0.012) (0.017) (0.027) (0.027)
Chemicals and chemical products 0.012 0.011 -0.009 -0.008 0.083

(0.008) (0.008) (0.011) (0.011)
Persons, plants, animals, and minerals 0.023∗∗∗ 0.024∗∗ 0.026∗ 0.029∗∗ 0.200

(0.008) (0.009) (0.014) (0.014)

Demographics X X X
Macroeconomic controls X X
Import penetration X
States 33 33 33 33
Observations 495 495 495 495
Note: The data is from the 1996-2010 CFOI. This table presents estimates of the effects of industrial robot
exposure on fatal injury incidence per 100,000 FTE workers. All regressions are weighted by state em-
ployment. Standard errors clustered at the state level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01

ities: a 10% increase in automation leads to a 1.7% rise in fatal injuries involving vehicles.
In Appendix A.2.2, we conduct a fatality analysis by event and find a significant increase
of fatalities due to “contact with objects and equipment” and “transportation accidents.”

in CFOI. However, as acknowledged in the paper, keywords used in the analysis are limited and incomplete,
because additional robot-related terms, such as manipulators, effector, and AMR (automous mobile robot),
are not included as keywords. This may not only lead to an undercount of fatalities, but also exclude sources
of injuries that may be robot-related.
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These results suggest that the overall increase in fatal workplace injuries may be, at least
in part, driven by robot-related physical accidents.

The additional sources include “parts andmaterials” that corresponds to injuries from
machine parts, tool parts, including building materials and nonstructural metal materi-
als; and “chemicals and chemical products” that includes chemicals in various states, e.g.,
liquid, gases, fumes, that include acids and metallic dusts, powders, and fumes. Robot
adoption may impact fatalities from these causes if they insulate workers from working
directly with dangerous or hazardous materials. However, we do not find significant ef-
fects on fatalities caused by these sources.

Figure 2: Fatal Workplace Injuries by Worker Demographics

(a) By age group
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Injury per 100,000 FTE
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(b) By race and sex
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Note: The data is from the 1996-2010 CFOI. This figure presents estimates of the effects of industrial robot
exposure on fatal workplace injury rates by demographic groups and 95% confidence intervals. All models
include the full set of controls and fixed effects. All regressions are weighted by the state employment of
each demographic group. Standard errors are clustered at the state level.

We further conduct age-specific analysis to examine potential heterogeneity in effects.
Figure 2 presents the effects on fatal injury incidence, with panel (a) displaying results by
worker age group and panel (b) by race and sex. Each panel includes estimates from a
specification without controls and one with a full set of control variables (corresponding
to Column (4) in Table 5). The aggregate effect masks substantial heterogeneity across
age groups. As shown in Table 1, fatal injury incidence increases with age: workers aged
65 and older experience an average incidence rate of 16.18 per 100,000 full-time equivalent
(FTE) workers, compared to 3.37 among those aged 25–34. Older workers are also the
most adversely affected by automation, with a 10% increase in robot exposure leading to
a 2.2% rise in fatal injury incidence (equivalent to 0.35 additional deaths per 100,000 FTE
workers). For middle-aged workers (45–54), robot exposure is associated with a 1.6% in-
crease in fatal injuries, while the effects are not statistically significant for younger workers
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(under 35) or those aged 55–64. Additionally, as shown in Figure 2(b), white and male
workers experience statistically significant increases in fatal injury rates, at 1.3% and 1.2%,
respectively. These patterns align with O’Brien et al. (2022), who find that a 10% rise in
robot exposure is associated with a 1% increase in mortality from unintentional injuries
among men aged 45–54.

The occupational data analyses highlight the multifaceted effects of automation across
severity of occupational risks. On one hand, it lowered nonfatal injury incidence, but had
adverse effects on fatal injury incidence. Further, the effects differ by worker character-
istics: adverse effects from fatal occupational injuries are concentrated among the old,
white, and male workers.

4.3 Automation and Hospitalizations

In this section, we supplement findings on occupational injuries with data on hospital dis-
charges. Relative to the occupational injury data, this analysis has several benefits. First,
we can measure automation exposure at a more disaggregated CZ level due to the avail-
ability of hospital county code data. Second, we can analyze automation’s impacts on both
physical and mental health conditions using diagnosis codes. Unlike the occupational in-
jury data, however, we are not able to identify whether the hospitalization is work-related.
To overcome this limitation, we utilize the primary payer information, which documents
whether the primary payer is a private payer (e.g., private HMO), Medicare, Medicaid, or
self-pay. Since employer-sponsored health insurance is the primary source of coverage for
workers in the US, particularly during our sample period before the enactment of the Af-
fordable Care Act, we provide estimates from using all hospital discharges and discharges
with private payer as the primary payer.

In Table 6, we present the estimation results by all payers in columns (1)-(3) and
private payers in columns (4)-(6). All results are based on specifications that include
cohort×sex cell, hospital, and year fixed effects and demographic controls; and additional
controls across specifications aremacroeconomic conditions, import penetration, andpop-
ulation size in CZ. In the main text, we focus on physical and mental-health related diag-
noses that aremore likely to have been impacted by automation, relegating results of other
diagnoses (e.g., neoplasm) to Appendix A.2.

First, we note from Table 6, that total admissions decreased among all payers and pri-
vate payers, but only statistically significantly so among all payers (column (3)). The
effects vary largely across diagnoses. Injuries, which include, e.g., fractures, dislocations,
sprains and strains of joints, or internal injuries of thorax, decreased significantly with the
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Table 6: Automation and Hospitalization: Discharges by Cause

All payers Private payers

(1) (2) (3) (4) (5) (6)

Total admissions -0.056∗ -0.060∗ -0.043 -0.030 -0.036 -0.028
(0.032) (0.031) (0.030) (0.031) (0.028) (0.030)

Injury -0.169∗∗∗ -0.167∗∗∗ -0.160∗∗∗ -0.131∗∗∗ -0.131∗∗∗ -0.126∗∗∗
(0.036) (0.037) (0.040) (0.028) (0.030) (0.032)

Backache -0.024 -0.035 -0.031 -0.022 -0.025 -0.024
(0.036) (0.034) (0.034) (0.030) (0.030) (0.029)

Mental disorders -0.097∗ -0.105∗∗ -0.083∗ -0.094∗∗ -0.104∗∗ -0.097∗
(0.053) (0.051) (0.050) (0.048) (0.049) (0.051)

Despair-related -0.102 -0.107∗ -0.074 -0.093 -0.101 -0.077
(0.065) (0.064) (0.058) (0.062) (0.064) (0.061)

Alcohol abuse -0.147∗∗ -0.146∗∗ -0.123∗∗ -0.083 -0.085 -0.070
(0.057) (0.058) (0.054) (0.055) (0.057) (0.057)

Substance abuse -0.107 -0.119∗ -0.080 -0.131∗∗ -0.141∗∗ -0.118∗
(0.070) (0.068) (0.060) (0.066) (0.068) (0.065)

Opioid abuse 0.030 0.014 0.048 0.085 0.071 0.093
(0.083) (0.076) (0.068) (0.073) (0.066) (0.061)

Suicide attempt 0.011 -0.005 0.023 0.057 0.042 0.061
(0.070) (0.066) (0.060) (0.061) (0.054) (0.050)

Demographics X X X X X X
Macroeconomic controls X X X X X X
Import penetration X X X X
log(population) X X
CZs 376 376 376 376 376 376
Observations 90,862 90,862 90,862 88,816 88,816 88,816

Note: The data is from the 1996-2010 HCUPNIS. This table presents estimates of the effects of industrial
robot exposure on the log of 1 plus the number of hospitalizations with specific conditions. All models
include fixed effects for cohort × sex cells, hospitals, and year. All regressions are weighted by the
population in cohort× sex cells within CZs. Standard errors clustered at the CZ level are in parentheses.
p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

adoption of robots. The coefficient implies that a 10% increase in robots (from the CZ-
level average of 1.49) lowers hospitalizations due to injuries by 2.4%, consistent with our
findings from the SOII data. The effect is significant among private payers at 1.9%, imply-
ing that these individuals are more likely to have been employed. Another physical injury
that may have been prevented from the adoption of robots is backache, for which we do
not find a significant effect.
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We now consider mental health-related diagnoses. There may be varied effects of au-
tomation on mental health. If automation assists workers in their tasks and boosts pro-
ductivity at workplaces, as evidenced byGraetz andMichaels (2018), it may enhance their
mental health. Conversely, if workers fear being replaced by automation (Acemoglu and
Restrepo, 2020), they may suffer from higher levels of stress. Therefore, a priori, it is dif-
ficult to gauge the net effects of automation on mental health. In Table 6, we present au-
tomation’s impacts on mental disorders, and “despair”-related conditions—alcohol, sub-
stance, and opioid abuse, and suicide attempt—combined, and for each category (Case
and Deaton, 2017). Our findings suggest that a 10% increase in robots lowers mental dis-
orders and despair-related hospitalizations by 1.2% and 1.1%, respectively, with similar
effects in magnitude across all and private payers. It is natural that our estimates for hos-
pitalizations due tomental disorders align qualitativelywith those for despair-related hos-
pitalizations, as our definition ofmental disorders includes alcohol- and drug-related con-
ditions (e.g., alcohol-induced mental disorders (ICD-9 code 291) and drug dependence
(ICD-9 code 304)). Among specific despair-related conditions, we find a larger impact
from substance abuse.

In Figure 3, we present results by age groups for each diagnosis, with eachmarker rep-
resenting a different specification. The first specification does not include any controls; the
second includes controls for demographic, macroeconomic variables, and import penetra-
tion; and the third further controls for the logged population in age group × sex cells.27

The aggregate results from Table 6 mask a large heterogeneity in how automation impacts
workers across different demographics. Figures 3(a) and (b) exhibit pronounced age gra-
dients in physical health benefits of automation. For injuries, hospitalizations decreased
with robot adoption for all age groups, with the greatest impact observed among 18-24-
year-olds at a 4.8% decrease, and the smallest impact among 55-65-year-olds at 1%.

For mental disorders and despair-related conditions, we also find heterogeneous ef-
fects acrossworker ages. In particular, young (18-24)workers are the oneswho experience
less mental disorders or despair-related conditions, with its effects at 3.6% and 4.3%. In
contrast, middle-aged individuals exhibit higher hospitalization rates for despair-related
conditions. Opioid abuse hospitalizations increase by 3.2% among those aged 45–54 and
by 1.4% among those aged 55–65, while hospitalizations due to suicide attempts rise by
1.7% for individuals aged 45–54 and 1.5% for those aged 55–65. Our findings align with
those of O’Brien et al. (2022), who document age-specific heterogeneity in the mortal-

27For this analysis, we aggregate the data by age group, sex and hospital and estimate regressions sep-
arately for each age group. Fixed effects for sex, year and hospital are included, along with the covariates
described in Section 3. The regressions are weighted by the population in age group× sex cells within CZs.
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Figure 3: Discharges by Age Group
(a) Total admissions
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Note: The data is from the 1996-2010 NIS. This figure presents estimates of the effects of industrial robot
exposure on the log of 1 plus the number of hospitalizations with specific conditions for each age group,
along with 95% confidence intervals. The specification is detailed in footnote 27.24



Figure 4: Discharges by Race and Sex
(a) Total admissions
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-.6 -.4 -.2 0 .2
Log 1+hospitalization

(e) Alcohol Abuse

White

Non-white

Men

Women

-.6 -.4 -.2 0 .2
Log 1+hospitalization

(f) Substance abuse

White

Non-white

Men

Women

-1 -.5 0 .5
Log 1+hospitalization

(g) Opioid abuse

White

Non-white

Men

Women

-1 -.5 0 .5
Log 1+hospitalization

(h) Suicide attempt

White

Non-white

Men

Women

-.4 -.2 0 .2
Log 1+hospitalization

Note: The data is from the 1996-2010 NIS. This figure presents estimates of the effects of industrial robot
exposure on the log of 1 plus the number of hospitalizations with specific conditions for each race and sex,
along with 95% confidence intervals. The specification is detailed in footnote 28.25



ity effects of automation. Specifically, they find that a 10% increase in robot exposure is
associated with a 0.9% and 1.8% rise in mortality due to suicide and drug overdose, re-
spectively, amongmen aged 45–54, relative to 1993. The pattern is also consistent with Al-
binowski and Lewandowski (2024), who find that automation negatively impacts employ-
ment among older workers, as they are less mobile in response to technological shocks.
Given Gihleb et al. (2022)’s findings that deteriorating mental health is closely linked to
job disruptions, we view our results as evidence that automation-induced job insecurity
disproportionately affects the mental health of middle-aged workers.

In Figure 4(a), we present results by race.28 We find that automation impacted total
admissions and hospitalizations due to injury of non-white workers more significantly as
shown in Figure 4(b), with smaller heterogneity across sex. Similar to physical conditions,
the automation seemed to have benefited non-whites more than white workers, with no
specific differences across sex.

Overall, the hospitalization analyses suggest that automation has widened the dispar-
ity in health risks across worker characteristics, especially ages. We see that while young
workers in CZs with higher automation exposure experience less hospitalization from in-
juries, middle-aged workers experienced increased hospitalizations, particularly due to
despair-related conditions.

4.4 Robustness Analyses

In this section, we test the robustness of our results across different estimation methods,
automation measures, and sample selections.

First, we examine whether our findings hold under a Two-Stage Least Squares (2SLS)
estimation. Our baseline analysis employs reduced-form regressions of outcomes on in-
strumental variables, allowing us to utilize longer observation periods, as US industry-
level robot stock data only begins in 2004. To verify the robustness of our results, we
perform a 2SLS estimation for the baseline period of 1996-2010, where the US robot expo-
sure, defined in Equation (1), is instrumented by our IV.29 The results of the 2SLS analysis

28For the race analyses, we aggregate the data by cohort, race, and hospital, and estimate regressions
separately for each race, controlling for fixed effects for cohort, year, and hospital, as well as the covariates
outlined in Section 3. The third specification controls for the logged population in cohort × race cells. The
regressions areweighted by the population in cohort× race cells within CZs. For the sex analyses, we aggre-
gate the data by cohort, sex, and hospital, estimating regressions for each sex while controlling for cohort,
year, and hospital fixed effects, in addition to the covariates described in Section 3. The third specification
controls for the logged population in cohort × race cells. These regressions are weighted by the population
in cohort × sex cells within CZs.

29For this exercise, we impute the industry-level US robot stock for 1996–2003 using data from 2004–2010.
Specifically, following Acemoglu and Restrepo (2020), we allocate the pre-2004 total US robot stock to each
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using a specification with all controls (analogous to column (4) in Tables 4 and 5) are
presented in column (1) of Tables 7 and 8.30 Our findings remain consistent under 2SLS
estimation: nonfatal injury rates decrease while fatal injury rates increase with automa-
tion. The implied effects of these 2SLS estimates closely align with our baseline results: a
10% increase in robot exposure, as defined in equation (1), from the mean of 0.92 robots
per 1,000 workers is associated with a 0.8% decrease in nonfatal injuries and a 1.1% in-
crease in fatal injuries. Similarly, for hospitalization, the 2SLS estimates align with our
baseline results in terms of sign and statistical significance.

Next, we validate the robustness of estimates by considering alternative constructions
of automation measures. Specifically, we examine three variations in the construction of
our instrumental variable as defined in Equation (4). First, we use employment share of
all industries instead ofmanufacturing. In our baseline, we focus onmanufacturing indus-
tries only, as the IFR data provides more detailed robot stock information for manufactur-
ing industries compared to service industries, allowing for more accurate measurement.
It also ensures that the normalized HHI of the shocks is close to zero, one of conditions for
satisfying identification conditions of SSIV. Column (2) of Tables 7 and 8 shows that our
results remain largely unchanged from the baseline when using the employment share
across all industries. Second, we replace the 1970 industry employment shares with the
1990 shares. The baseline uses the 1970 shares to capture the industrial specialization of
CZs that predated the onset of automation in the US. Nevertheless, as shown in column
(3) of Tables 7 and 8, our results are robust to this alternative IV construction using the
1990 shares. Finally, we test the robustness of our findings by using data from nine Eu-
ropean countries, including Germany, Norway, Spain, and the UK, for which the robot
stock data is available, in addition to EURO5. While our choice of EURO5 is motivated by
the fact that these countries are ahead of the US in robot adoption, allowing us to isolate
global technological improvements in robotics, our findings remain robust even when in-
cluding countries further ahead (Germany) or behind (Norway, Spain, and the UK) in
robot adoption. These results are presented in column (4) of Tables 7 and 8.

We conduct the same robustness checks for the heterogeneous effects on fatal work-
place injuries and hospitalizations by age group, race, and sex. The results, presented in
Tables A.7, A.8, and A.9, are based on 2SLS estimation and alternative IV constructions.
These results confirm that the heterogeneity observed in the baseline persists: increased

IFR industry proportionally to its share of the classified US stock from 2004–2010. The underlying assump-
tion of this approach is the pattern of industry-level robotization before 2004 was similar to that observed
during 2004–2010.

30We report the corresponding ordinary least squares estimates in Tables A.10 and A.11 in Appendix A.3.
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Table 7: Automation and Workplace Injuries
Alternative Estimation and Automation Measures

(1) (2) (3) (4)
2SLS All industry 1990 shares EURO9

All nonfatal injury -0.421∗∗∗ -0.267∗∗∗ -0.666∗∗∗ -0.189∗∗∗
(0.118) (0.087) (0.177) (0.053)

Nonfatal injuries by type
Injury w/o lost workdays -0.178∗∗ -0.112∗ -0.332∗∗ -0.093∗∗

(0.087) (0.060) (0.122) (0.034)

Injury w / days of -0.239∗∗∗ -0.151∗∗∗ -0.293∗∗∗ -0.088∗∗∗
(0.034) (0.025) (0.029) (0.014)

Injury w / days away from work -0.037 -0.025 -0.084 -0.019
(0.043) (0.028) (0.058) (0.015)

All fatal injuries 0.536∗∗ 0.330∗∗ 0.517∗∗∗ 0.204∗∗∗
(0.216) (0.123) (0.178) (0.066)

Fatal injuries by source
Tools, instruments, and equipment 0.024∗∗ 0.015∗∗ 0.018 0.009∗∗

(0.011) (0.007) (0.012) (0.004)

Machinery 0.007 0.005 -0.003 -0.001
(0.040) (0.025) (0.037) (0.013)

Vehicles 0.314∗∗ 0.198∗∗ 0.305∗∗ 0.118∗∗∗
(0.127) (0.076) (0.117) (0.043)

Parts and materials 0.016 0.009 0.002 0.002
(0.024) (0.015) (0.026) (0.009)

Containers -0.004 -0.003 -0.009 0.001
(0.013) (0.008) (0.014) (0.004)

Structures and surfaces 0.040 0.023 0.038 0.015
(0.044) (0.026) (0.040) (0.016)

Chemicals and chemical products -0.013 -0.009 -0.014 -0.003
(0.018) (0.011) (0.020) (0.006)

Persons, plants, animals, and minerals 0.048∗ 0.029∗∗ 0.041 0.015∗
(0.024) (0.014) (0.024) (0.008)

First-stage F stat. 174.0
Observations 495 495 495 495
States 33 33 33 33

Note: The data is from the 1996-2010 SOII, CFOI, and HCUP NIS. All models include the full set of
controls and fixed effects. All regressions are weighted by the state employment or CZ population.
Standard errors clustered at the state or CZ level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01
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Table 8: Automation and Hospitalization
Alternative Estimation and Automation Measures

(1) (2) (3) (4)
2SLS All industry 1990 shares EURO9

Total admissions -0.153 -0.044 -0.092∗∗ -0.025∗∗
(0.111) (0.030) (0.045) (0.012)

Injury -0.578∗∗∗ -0.162∗∗∗ -0.268∗∗∗ -0.064∗∗∗
(0.160) (0.040) (0.062) (0.020)

Backache -0.111 -0.034 -0.078 -0.004
(0.117) (0.034) (0.056) (0.011)

Mental disorders -0.301 -0.084∗ -0.139∗ -0.035∗
(0.198) (0.051) (0.082) (0.018)

Despair-related -0.268 -0.077 -0.159∗ -0.024
(0.220) (0.058) (0.091) (0.024)

Alcohol abuse -0.442∗∗ -0.125∗∗ -0.254∗∗∗ -0.035∗
(0.212) (0.054) (0.082) (0.021)

Substance abuse -0.288 -0.081 -0.154 -0.026
(0.230) (0.060) (0.098) (0.025)

Opioid abuse 0.173 0.044 0.009 0.014
(0.244) (0.069) (0.114) (0.034)

Suicide attempt 0.083 0.022 0.035 -0.005
(0.217) (0.060) (0.102) (0.020)

First-stage F stat. 41.5
Observations 90,862 90,862 90,862 90,862
CZs 376 376 376 376

Note: The data is from the 1996-2010 HCUP NIS. This table presents estimates
of the effects of industrial robot exposure on the log of 1 plus the number of hos-
pitalizations with specific conditions. All models include the full set of controls
and fixed effects. All regressions are weighted by the population in cohort× sex
cells within CZs. Standard errors clustered at the CZ level are in parentheses.
p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

fatal injuries among individuals aged 45–54, 65 and older, white workers, and men; and
decreased hospitalizations due to injuries, mental disorders, and despair-related condi-
tions among younger age groups.

Lastly, we further demonstrate the robustness of our findings regarding sample choices,

29



with detailed results presented in Tables A.12–A.14, and Figure A.3 in Appendix A.3.
While in CFOI, data on fatal injury is available for all states andDC, in SOII, nonfatal injury
data is available for 43 states and some states are missing in some years. In our baseline,
we restrict the sample of SOII andCFOI analyses to a balanced panel of 33 states for consis-
tency. In Tables A.12 and A.13, we report results using all states available and find robust
effects. Additionally, to ensure that our results are not driven by any single state, we con-
duct a leave-one-out analysis for the workplace injury regressions by excluding one state
at a time and re-estimating Equation (2). As shown in Figure A.3, the estimates remain
consistent across the excluded states, with Michigan being the only exception. Although
the estimates excluding Michigan differ slightly, they still exhibit qualitatively consistent
patterns. In particular, the impact of automation on nonfatal injuries resulting in days
away from work declines more steeply, while the effect on fatal injury incidence rises sig-
nificantly. The hospitalization results also remain robust to excludingCZswith the highest
or lowest (or both) robot exposure as shown in Table A.14.

5 Discussion

5.1 Quantifying the Occupational Injury Effects of Automation

Our occupational injury analyses suggest that automation has led to a divergence in the
severity of injuries at workplaces. While robot adoption has contributed to a decline in
nonfatal injuries, it has simultaneously increased the incidence of more severe, fatal in-
juries. We use these estimates to conduct a back-of-the-envelope calculation to assess the
economic implications of these effects.

In our baseline sample states, robot exposure, as defined in Equation (4), increased
from 0.96 to 2.31 robots per 1,000 manufacturing workers between 1996 and 2010. Our
estimates indicate that automation reduced nonfatal workplace injuries by 0.35 per 100
workers over this period. Given the employment of 141.4 million in 1996, this translates to
an estimated reduction of 498,149 nonfatal injuries, or 33,209 fewer injuries annually. Ad-
ditionally, we estimate a decrease of 6,953 injury-related hospitalizations per year, based
on an increase of 1.15 in CZ-level robot exposure and the 1996 baseline of 620,577 injury-
related hospitalizations. This is consistent with our estimate of nonfatal workplace injury
reduction, considering that nonfatal injuries involving days away from work account for
approximately 30% of total nonfatal injuries (see Table 1), and not all such injuries would
result in hospitalization. At the same time, our findings suggest that automation increased
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workplace fatalities by 634 between 1996 and 2010, or 42 per year.31

To estimate the cost savings and burdens associated with automation’s impact on in-
juries, we use the estimated cost of occupational injuries from Leigh (2011), the value
of a statistical injury (VSI), and the value of a statistical life (VSL).32 According to Leigh
(2011), the average cost of a nonfatal occupational injury—including medical expenses
and indirect costs such as hiring and training replacements—is $32,900 (in 2023 USD).
Based on this estimate, the reduction in nonfatal injuries due to automation results in ap-
proximately $1.1 billion in annual cost savings. If we use the VSI estimate, which reflects
the willigness to pay to reduce risks of nonfatal injuries, of $57,400 (in 2023 USD) from
Garen (1988), the reduction in nonfatal injuries due to automation translates to approx-
imately $1.9 billion in annual cost savings.33 In contrast, the additional costs associated
with increased fatal injuries range from $262 million to $516 million per year, based on
the 25th and 75th percentile VSL estimates of $6.2 million and $12.3 million from Banzhaf
(2022).34 This implies that the economic burden of rising fatal injuries offsets 14% to 27%
of the cost savings from reduced nonfatal injuries using VSI; or 24% to 47%, using Leigh
(2011)’s estimates.35 It is important to note, however, that this quantification primarily
captures the effects of injuries occurring in workplaces and does not necessarily account
for the costs (or benefits) associated with mental health conditions.

5.2 Implications for Policy

Our findings have implications for policies aimed at preventing workplace injuries and
providing insurance to those affected.

First and foremost, the rise in fatal injuries underscores the need for enhanced safety
training in workplaces. In the US, the Occupational Safety and Health Administration
(OSHA) establishes standards that require employers to train employees on workplace

31This estimate is based on all workplace fatalities. We find 28 additional fatalities (2 per year) attributed
to “tools, instruments, and equipment” and 372 additional fatalities (25 per year) related to “vehicles” be-
tween 1996 and 2010.

32Leigh (2011) calculate the estimates based on empirical data such as injury reports, healthcare expendi-
tures, and labor markt records. On the other hand, VSI and VSL are derived from labor market equilibrium
in hedonicwagemodels, capturing the trade-off betweenwages and risk (nonfatal for VSI and fatal for VSL).

33While our calculation accounts for all types of nonfatal injuries, most VSI studies focus only on those
involving days away from work, with Garen (1988) being an exception that includes all nonfatal injuries.
Despite being dated, Garen (1988)’s estimate seems reasonable given a recent VSI estimate of $132,700 from
Viscusi and Gentry (2015), which focuses on injuries with days away from work.

34For inflation and income adjustments to VSI and VSL, we follow the methodology outlined in Banzhaf
(2022) and its supplementary appendix, applying a rule-of-thumb income elasticity of 1.

35We obtain a similar cost-savings estimate when using 2SLS and the US robot measure, which imply an
annual decrease of 31,744 nonfatal injuries and an increase of 606 fatal injuries.

31



safety. These training requirements include programs to prevent injury and illness, for
example, in performing welding, cutting, and brazing, or operating machinery. In 2025,
employers found in violation face penalties of up to $16,550 per violation, or $165,514 per
violation if deemedwillful or repeated.36 Given the negative impact of automation-related
fatalities, strengthening safety training requirements to reflect emerging technologies and
tightening enforcement mechanisms may be necessary to reinforce the importance of pre-
ventive measures.

On the worker-side, social insurance policies have important roles for those impacted
by automation. Among them, workers’ compensation program, a state-run program,
plays an important role in the US, providing insurance coverage to individuals who are
injured or become ill whileworking. It coversmillions ofworkers annually: In 2020, nearly
136 million jobs were covered, with total covered wages amounting to $8.7 trillion (Mur-
phy andWolf, 2022).37 The program covers four main areas: medical care, temporary dis-
ability, permanent disability, and death benefits.38 Medical expenses are fully covered, but
wage replacement only kicks in if time lost exceeds the three-to-seven-day waiting period.
Temporary and permanent disability benefits include wage replacement and are given to
workers depending on their ability to return to their regular jobs. In cases of workplace
fatalities, death benefits cover funeral costs and provide financial support to dependents.
While mental health conditions are only covered in 34 states, its coverage varies.39

We find that robot exposure has led to a significant reduction in nonfatal workplace
injuries, particularly those requiring job transfers and restricted duties. This may sug-
gest that automation is supporting workers in physically demanding or repetitive tasks
that previously resulted in injuries requiring time away from work, potentially lowering
claims for temporary disability benefits. Given that temporary benefit payments make up
a large share of workers’ compensation costs, a continued shift toward automation could
lead to long-term cost reductions in the system. However, the new risks introduced by au-
tomation that lead to increased mental conditions (for middle-aged workers) and higher
fatalities may require adjustments to workers’ compensation policies, particularly regard-
ing coverage for robot-related mental health conditions and workplace deaths.

36See https://www.osha.gov/penalties for details.
37Industries such as underground mining, construction, and transportation incur some of the highest

workers’ compensation costs per employee per hour due to the hazardous nature of their work, according
to https://workcomplab.com/insurance-industry/.

38See https://www.nasi.org/learn/workers-compensation-disability.
39See https://www.ncsl.org/labor-and-employment/.
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6 Conclusion

This paper examines the impact of automation on workers’ health risks. Because au-
tomation impacts workers through several channels—such as reducing physical burden
at work, increasing productivity at the firm level, or displacing workers—its health effects
may vary, and could differ based on worker characteristics. We conduct a comprehen-
sive analysis on this issue, by analyzing data on nonfatal and fatal workplace injuries,
as well as hospitalization records with medical diagnoses. We highlight two key find-
ings. First, while automation has led to a decline in nonfatal occupational injuries, it has
simultaneously increased fatal occupational injuries, impacting the severity of workplace
health risks. This discrepancy in automation’s effects across injury severitymay arise from
automation’s role in assisting workers with dangerous tasks while simultaneously intro-
ducing new risks that require worker adaptation. Second, while automation decreased
hospitalizations among young workers for injuries and conditions related to mental and
despair-related conditions, it had an adverse effect on middle-aged and older workers,
suggesting that health risks have become more varied across different age groups. Such
effects may stem from younger workers adaptingmore easily to new technology and align
with pevious research documenting greater displacement effects on older workers due to
automation. Overall, despite the contrasting effects on nonfatal and fatal injuries, the net
economic impact of automation on worker safety remains positive.

Our study highlights the need for robust worker safety training and comprehensive
social insurance policies that support workers facing a range of physical andmental health
challenges. Furthermore, it is crucial to examine how differential technology adoption
across industries and occupations affect workers’ health risks.
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Online Appendix

A.1 Additional Data Details

A.1.1 Automation in the US and EURO5

Figure A.1 shows the trend of robot stocks for European countries and the US. We use
the robot exposure based on EURO5 (Denmark, Finland, France, Italy, and Sweden) in
the baseline IV construction to capture variation driven by global technological advances.
We exclude Germany because its robot adoption is far ahead of that of the US, which may
make it less relevant. Meanwhile, other European countries (Norway, Spain, and the UK)
are not included as their robot adoption lags behind that of the US.

To examine the correlation between US and EURO5 robot adoption at the industry
level, in Figure A.2, we plot the average of industry-level robot stock per 1,000 workers in

the US,
(
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)
in 2004-2010 and in EURO5
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in 1996-2010. There is a

close association between the twomeasures with an R-squared of 0.8, mitigating concerns
about a weak IV.

Figure A.1: Robot adoption in the United States and Europe

0
1

2
3

4
5

6
R

ob
ot

s p
er

 th
ou

sa
nd

 o
f w

or
ke

rs
 in

 1
99

3

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017

Germany
Denmark, Finland, France, Italy and Sweden
United States
Norway, Spain, and UK

Note: The robot measure is constructed using data from IFR, CBP, and EU KLEMS. The figure displays the
robot stock per 1,000 workers in the US and Europe from 1993 to 2017.
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Figure A.2: Robot adoption in the United States and EURO5 by industry
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Note: Robot measures are constructed using data from IFR, CBP, and EU KLEMS. The figure displays the
average industry-level robot stock per 1,000 workers in the U.S. (2004–2010) and EURO5 (1996–2010),
where the EURO5 measure is based on robot stock per 1,000 workers in 1970 (as in Equation 4). The
dashed line indicates the 45-degree line. The circle size represents the 1996-2010 average US employment
in the industry.
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A.1.2 CFOI: Source of Injury

Table A.1 presents the categorization of injury sources in CFOI from the Occupational
Injury and Illness Classification Manual (BLS, 1992).

Table A.1: Description of Source of Injuries (CFOI)

Source of injury Description and example

Chemicals and Chemical Products This division includes chemicals and chemical products in var-
ious states—liquids, gases, fumes, vapors, and solids.
Includes: acids; alkalies; aromatics and hydrocarbon deriva-
tives; halogens and their compounds; metallic dusts, powders
and fumes; agricultural chemicals and pesticides; coal, natural
gas, petroleum fuels and products; other chemicals and chem-
ical products

Containers This division classifies receptacles that are commonly used to
hold, store, or carry materials. All containers may be empty or
full. Pressurized and nonpressurized containers are fix-shaped
receptacles used to hold,store, or carry materials. Variable re-
straint containers include bundles, packages, and rolls where
thematerial being contained is usually the surface of the con-
tainer.
Includes: Pressurized containers; nonpressurized containers;
variable restraint containers; dishes, cups, glasses; luggage;
skids and pallets.

Machinery This division classifies light and heavy machinery which per-
form specific functions or processes under power. Machinery
is defined as a combination of smaller machines (elements or
parts) which are capable of motion and are contained in a sta-
tionary frame.
Includes: agricultural and garden machinery; construction,
logging, and mining machinery; heating, cooling, and clean-
ing machinery and appliances; material and personnel han-
dling machinery (e.g., conveyors, cranes, hoists, elevators,
etc.); metal, woodworking, and special material machinery; of-
fice and business machinery; special process machinery; mis-
cellaneous machinery

Parts and Materials This division classifies machine parts, tool parts, and automo-
bile parts, as well as building materials, insulating materials,
and nonstructural metal materials.
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Table A.1 – continued from previous page

Source of injury Description and example

Includes: building materials—solid elements; structural metal
materials; fasteners, connectors, ropes, ties; hoisting ac-
cessories; machine, tool, and electric parts; metal materi-
als—nonstructural; tars, sealants, caulking, insulating mate-
rial; tarps and sheeting—nonmetal; vehicle and mobile equip-
ment parts

Persons, Plants, Animals, and Minerals This division classifies living organisms (including infectious
and parasitic agents) and their products, as well as raw, metal-
lic and nonmetallic minerals.
Includes: animals and animal products; fresh or processed
food products; infectious and parasitic agents; metallic miner-
als; nonmetallic minerals (except fuel); person—injured or ill
worker; person—other than injured or ill worker; bodily fluids;
unprocessed plants, trees, vegetation

Structures and Surfaces This division classifies all types of structures and structural ele-
ments including building structures and systems, bridges, sta-
dia, tunnels, towers, and dams as well as other structural ele-
ments.
Includes: building systems; floors, walkways, ground surfaces;
other structural elements; structures

Tools, Instruments, and Equipment This division classifies handtools (nonpowered; powered;
power not determined), ladders (fixed; movable), equipment
(photographic; protective; recreation, athletic), and instru-
ments (medical and surgical)
Includes: nonpowered handtools; powered handtools; hand-
tools—power not determined; ladders; medical and surgi-
cal instruments and equipment; photographic equipment;
protective equipment (except clothing); recreation and ath-
letic equipment; clocks; cooking and eating utensils (except
knives); firearms and other weapons; musical instruments;
sewing notions, n.e.c.; writing, drawing, and art supplies

Vehicles This division classifies vehicles that generally move on wheels,
runners, water, or air.
Includes: air vehicles; rail vehicles and rail cars; water vehicles;
motorized highway vehicles; nonmotorized highway vehicles;
off-road vehicles including powered plant and industrial vehi-
cles; tractors; nonpowered plant and industrial vehicles
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A.1.3 NIS: Diagnosis Definitions and Summary Statistics

Table A.2 details the mapping between diagnosis conditions and ICD-9 codes following
Adda and Fawaz (2020); and Table A.3, summary statistics of hospitalization by diagnoses
(analogous to Table 2) omitted from the main text.

Table A.2: Diagnosis Definitions

Conditions ICD-9 codes

Injury 800–869
Backache 724.0/724.99
Mental disorders 290–311
Alcohol abuse 305, 291–292, 303, 571.0-571.4, E860.0
Substance abuse 304, 292.0, 305.2/305.95, E850.0, E850.1, 970.8
Opioid abuse 304.00, 304.01, 304.02, 304.03, 304.70, 304.71, 304.72,

304.73, 305.50, 305.51, 305.52, 305.53, 965.00, 965.09,
E850.2, E935.2

Suicide attempt E850–E859, E868.2, E950–E960
Homicides and crime E960–E979
Heart problems 410–438
Infectious diseases 001–139
Respiratory diseases 460–519
Endocrine, nutritional and metabolic diseases 240–280
Inappropriate diet V69.1
Neoplasm (all) 140–239
Neoplasm (tobacco related) 162, 140–151, 153–154, 157, 160–161, 179–180, 183,

188–189, 205

Table A.3: Summary Statistics of Hospitalization: Other Causes (per Hospital)

Mean SD P25 P50 P75
Homicides and crime 105.7 334.9 0.0 15.8 61.3
Heart problems 4,177.8 5,851.4 443.6 1,983.6 5,505.3
Infectious diseases 2,127.0 3,173.0 253.2 1,000.4 2,682.9
Respiratory diseases 3,938.5 5,147.1 577.0 2,161.7 5,261.4
Digestive system 4,642.2 6,151.5 685.0 2,563.8 6,107.7
Endocrine nutritional metabolic 7,302.0 10,043.4 900.5 3,656.2 9,718.9
Diet related 6,101.5 8,559.5 709.8 2,964.6 8,122.1
Neoplasm all 1,979.6 3,447.4 162.4 772.8 2,400.4
Neoplasm tobacco related 542.9 992.9 41.1 200.9 633.5
Observations 9,950
Note: The data is from the NIS for years 1996-2010. This table presents summary statistics on
patient discharges at the hospital level, restricted to individuals aged 18 to 65 and weighted by
discharge weights.
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A.2 Additional Empirical Results

A.2.1 States and Commuting Zone Characteristics

Table A.4 summarizes the state and CZ-level characteristics in 1996, the start of our sample
period, both for all and in-sample data.40 At the state-level, there are no significant dif-
ferences in observed characteristics in our sample compared to those in all states. Within
commuting zones, the average automation exposure in our sample is lower than the na-
tional average becauseMichigan–the statewith the highest robot exposure–is not included.
However, the difference in robot exposure between in-sample and out-of-sample CZs is
not statistically significant.

40There are no publicly available county- or CZ-level educational attainment data for the years 1991–1999
(Bode, 2011). Therefore, we use county-level estimates from Bode (2011) to construct CZ-level measures
for this analysis.
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Table A.4: State and CZ Characteristics in 1996

States Commuting Zones
All In sample All In sample

Robot exposure 0.95 0.96 0.93 0.83
(0.63) (0.69) (0.70) (0.41)

Share of age 25-34 0.15 0.15 0.15 0.15
(0.01) (0.01) (0.02) (0.02)

Share of age 35-44 0.16 0.16 0.16 0.16
(0.01) (0.01) (0.01) (0.01)

Share of age 45-54 0.12 0.12 0.12 0.12
(0.01) (0.01) (0.01) (0.01)

Share of age 55-64 0.08 0.08 0.08 0.08
(0.01) (0.01) (0.01) (0.01)

Share of age 65+ 0.12 0.11 0.13 0.13
(0.02) (0.01) (0.03) (0.03)

Share of white 0.83 0.82 0.73 0.74
(0.09) (0.09) (0.17) (0.16)

Share of non-hispanic black 0.13 0.13 0.12 0.11
(0.09) (0.08) (0.10) (0.09)

Share of high school or less 0.76 0.76 0.76 0.75
(0.04) (0.04) (0.07) (0.07)

Share of manufacturing 0.16 0.16 0.16 0.15
(0.05) (0.05) (0.08) (0.07)

Share of light manufacturing 0.03 0.03 0.03 0.03
(0.02) (0.02) (0.02) (0.02)

Import penetration 0.85 0.88 0.86 0.85
(0.28) (0.29) (0.59) (0.57)

Unemployment rate 0.05 0.06 0.05 0.06
(0.01) (0.01) (0.02) (0.02)

Observations 51 33 738 387
Note: Standard deviations are in parentheses. The data is from themonthly CPS for state
demographics and industry characteristics, SEER andBode (2011) for CZdemographics,
and CBP for CZ industry characteristics. Import penetration is constructed using Autor
et al. (2013). Statistics are weighted by the 1996 population.
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A.2.2 Fatal Workplace Injuries by Event

Table A.5 reports estimates of the impact of automation on fatal injury rates by event. In
our preferred specification in column (4), we find that automation is associated with in-
creases in fatal injuries caused by contactwith objects and equipment, exposure to harmful
substances, and transportation accidents, similar to findings in Layne (2023).

Table A.5: Automation and Fatal Workplace Injuries by Event (per 100,000 FTEWorkers)

(1) (2) (3) (4) Mean
All fatal injuries 0.177∗ 0.136 0.295∗∗ 0.332∗∗ 4.354

(0.089) (0.097) (0.130) (0.123)
Fatal injuries by event
Contact with objects and equipment 0.014 0.012 0.027 0.040∗ 0.729

(0.018) (0.018) (0.029) (0.023)

Falls 0.008 0.006 0.021 0.023 0.550
(0.011) (0.013) (0.024) (0.025)

Exposure to harmful substances 0.015∗∗ 0.016 0.028∗ 0.028∗ 0.365
(0.006) (0.010) (0.014) (0.015)

Transportation accidents 0.116∗∗ 0.090 0.168∗∗ 0.182∗∗ 1.852
(0.053) (0.063) (0.069) (0.073)

Fires and explosions -0.021∗ -0.019∗ -0.017 -0.012 0.120
(0.011) (0.009) (0.015) (0.014)

Assaults and violent acts 0.039 0.024 0.059 0.063 0.684
(0.024) (0.029) (0.048) (0.048)

Other events or exposures 0.001 0.001 0.001 0.001 0.005
(0.001) (0.001) (0.001) (0.001)

Demographics X X X
Macroeconomic controls X X
Import penetration X
Observations 495 495 495 495 495
States 33 33 33 33
Note: The data is from the 1996-2010 CFOI. This table presents estimates of the effects of industrial
robot exposure on fatal injury incidence per 100,000 FTEworkers. All regressions areweighted by state
employment. Standard errors clustered at the state level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01
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A.2.3 Hospitalization by Diagnoses

Table A.6 reports the effects of automation on discharges by specific diagnoses, not re-
ported in themain text. We find a significant decrease in discharges due to tobacco-related
neoplasm, but not from other causes, e.g., homicide or respiratory diseases.
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Table A.6: Automation and Hospitalization: Other Causes

All payers Private payers
(1) (2) (3) (4) (5) (6)

Homicides and crime 0.022 0.010 0.032 0.016 0.006 0.020
(0.074) (0.068) (0.062) (0.051) (0.044) (0.041)

Heart problems -0.016 -0.021 -0.004 -0.032 -0.037 -0.028
(0.035) (0.034) (0.032) (0.031) (0.031) (0.032)

Infectious diseases 0.030 0.024 0.048 0.045 0.035 0.047
(0.045) (0.043) (0.039) (0.041) (0.038) (0.037)

Respiratory diseases 0.023 0.019 0.034 0.035 0.027 0.028
(0.037) (0.036) (0.033) (0.036) (0.034) (0.035)

Digestive system -0.026 -0.034 -0.020 -0.009 -0.019 -0.015
(0.040) (0.039) (0.037) (0.042) (0.037) (0.038)

Endocrine nutritional metabolic -0.019 -0.021 -0.005 0.009 0.006 0.012
(0.031) (0.031) (0.031) (0.036) (0.035) (0.037)

Diet related -0.026 -0.031 -0.014 -0.010 -0.016 -0.008
(0.034) (0.032) (0.030) (0.031) (0.029) (0.029)

Neoplasm all -0.057 -0.065 -0.051 -0.015 -0.024 -0.014
(0.046) (0.045) (0.043) (0.050) (0.045) (0.044)

Neoplasm tobacco related -0.100∗∗∗ -0.106∗∗∗ -0.090∗∗ -0.032 -0.041 -0.026
(0.034) (0.037) (0.037) (0.040) (0.037) (0.037)

Death -0.016 -0.009 0.015 -0.027 -0.023 -0.004
(0.039) (0.038) (0.036) (0.036) (0.037) (0.037)

Demographics X X X X X X
Macroeconomic controls X X X X X X
Import penetration X X X X
Log population X X
Observations 90,862 90,862 90,862 88,816 88,816 88,816
CZs 376 376 376 376 376 376
Note: The data is from the 1996-2010 HCUP NIS. This table presents estimates of the effects of industrial robot
exposure on the log of 1 plus the number of hospitalizations with specific conditions. All models include fixed
effects for cohort × sex cells, hospitals, and year. All regressions are weighted by the population in cohort × sex
cells within CZs. Standard errors clustered at the CZ level are in parentheses. p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.3 Robustness Checks

A.3.1 Alternative Estimation and Automation Measures

In this section, we present tables and figures that support the robustness of our findings.
Tables A.7, A.8, and A.9 confirm that the magnitude and statistical significance of our
heterogeneity estimates remain consistent under an alternative estimation method and al-
ternative robot exposure measures, as detailed in the robustness checks in the main text
(Tables 7 and 8). Specifically, Table A.7 corresponds to Figure 2, where we examine the
heterogeneous effects of industrial robot exposure on fatal injuries by age group, race, and
sex. Similarly, Tables A.8 and A.9 demonstrate the robustness of the heterogeneous effects
of robot exposure on hospitalizations across age groups (Figure 3) and by race and sex
(Figure 4). For ease of comparison, we report the baseline reduced-form estimates in col-
umn (1) of Tables A.7, A.8, and A.9. In column (2), we present 2SLS estimates. Next, we
test the robustness of reduced-form estimates under alternative constructions of the robot
exposuremeasure: using employment shares of all industries instead ofmanufacturing in-
dustries (column (3)); replacing 1970 employment shares with 1990 shares (column (4));
and incorporating robot adoption data from nine European countries instead of EURO5
(column (5)). Lastly, we report estimates from OLS regressions in Tables A.10 and A.11.

48



Table A.7: Fatal Workplace Injuries by Worker Demographics
Alternative Estimation and Automation Measures

(1) (2) (3) (4) (5)
Baseline 2SLS All industry 1990 shares EURO9

By age group
<25 0.245 0.397 0.242 0.359 0.152

(0.224) (0.374) (0.224) (0.357) (0.130)

25-34 0.136 0.220 0.132 0.187 0.096
(0.149) (0.247) (0.147) (0.222) (0.082)

35-44 0.266∗ 0.433∗ 0.263∗ 0.332 0.128∗
(0.143) (0.252) (0.143) (0.212) (0.069)

45-54 0.391∗∗ 0.631∗∗ 0.398∗∗ 0.689∗∗∗ 0.226∗∗∗
(0.147) (0.244) (0.148) (0.240) (0.081)

55-64 0.198 0.312 0.191 0.044 0.132
(0.214) (0.344) (0.214) (0.362) (0.103)

65+ 1.948∗∗∗ 3.077∗∗∗ 1.876∗∗∗ 2.301∗∗ 1.025∗∗∗
(0.587) (1.036) (0.580) (1.105) (0.337)

By race and sex
White 0.350∗∗ 0.574∗∗ 0.348∗∗ 0.570∗∗ 0.242∗∗∗

(0.132) (0.230) (0.132) (0.209) (0.079)

Non-white 0.274 0.431 0.279 0.443 0.103
(0.176) (0.297) (0.178) (0.263) (0.080)

Men 0.550∗∗∗ 0.889∗∗ 0.550∗∗∗ 0.880∗∗∗ 0.331∗∗∗
(0.200) (0.349) (0.201) (0.301) (0.104)

Women 0.015 0.024 0.013 0.001 0.020
(0.033) (0.054) (0.033) (0.049) (0.021)

First-stage F stat. 171.8
Observations 495 495 495 495 495
States 33 33 33 33 33

Note: The data is from the 1996-2010 CFOI. This table presents estimates of the effects
of industrial robot exposure on fatal workplace injury rates by demographic groups. All
models include the full set of controls and fixed effects. All regressions are weighted by
the state employment of each demographic group. Standard errors are clustered at the
state level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.8: Hospitalization by Age Group
Alternative Estimation and Automation Measures

(1) (2) (3) (4) (5)
Baseline 2SLS All industry 1990 shares EURO9

Total admissions 18-24 -0.121∗∗ -0.451∗∗ -0.124∗∗∗ -0.225∗∗∗ -0.065∗∗∗
(0.048) (0.186) (0.047) (0.070) (0.019)

25-34 -0.182∗∗∗ -0.664∗∗∗ -0.181∗∗∗ -0.271∗∗∗ -0.072∗∗∗
(0.054) (0.236) (0.054) (0.082) (0.023)

35-44 -0.072∗∗ -0.263∗ -0.073∗∗ -0.142∗∗∗ -0.034∗∗
(0.036) (0.141) (0.036) (0.054) (0.015)

45-54 -0.024 -0.087 -0.025 -0.062 -0.018
(0.031) (0.113) (0.031) (0.046) (0.013)

55-65 -0.012 -0.044 -0.012 -0.024 -0.014
(0.023) (0.086) (0.024) (0.041) (0.011)

Injury 18-24 -0.337∗∗∗ -1.257∗∗∗ -0.339∗∗∗ -0.536∗∗∗ -0.115∗∗∗
(0.073) (0.309) (0.074) (0.112) (0.032)

25-34 -0.193∗∗∗ -0.705∗∗∗ -0.192∗∗∗ -0.284∗∗∗ -0.073∗∗
(0.061) (0.231) (0.062) (0.091) (0.029)

35-44 -0.126∗∗ -0.461∗∗∗ -0.125∗∗ -0.225∗∗∗ -0.055∗∗
(0.050) (0.171) (0.051) (0.081) (0.025)

45-54 -0.102∗∗ -0.373∗∗∗ -0.103∗∗ -0.172∗∗∗ -0.035∗
(0.040) (0.143) (0.040) (0.066) (0.019)

55-65 -0.069∗ -0.255∗ -0.069∗ -0.114∗ -0.044∗
(0.041) (0.154) (0.041) (0.062) (0.026)

Mental disorders 18-24 -0.248∗∗∗ -0.924∗∗ -0.249∗∗∗ -0.409∗∗∗ -0.106∗∗∗
(0.089) (0.382) (0.090) (0.147) (0.030)

25-34 -0.235∗∗∗ -0.858∗∗ -0.233∗∗∗ -0.309∗∗ -0.085∗∗∗
(0.078) (0.348) (0.078) (0.132) (0.032)

35-44 -0.084 -0.308 -0.084 -0.124 -0.037
(0.058) (0.227) (0.058) (0.093) (0.023)

45-54 -0.017 -0.064 -0.019 -0.049 -0.008
(0.046) (0.168) (0.046) (0.071) (0.017)

55-65 -0.020 -0.073 -0.021 -0.055 -0.013
(0.032) (0.114) (0.031) (0.054) (0.015)

Despair-related 18-24 -0.292∗∗∗ -1.088∗∗∗ -0.296∗∗∗ -0.518∗∗∗ -0.116∗∗∗
(0.087) (0.391) (0.087) (0.141) (0.032)

25-34 -0.290∗∗∗ -1.060∗∗ -0.288∗∗∗ -0.451∗∗∗ -0.098∗∗∗
(0.094) (0.426) (0.095) (0.158) (0.037)

35-44 -0.068 -0.250 -0.069 -0.127 -0.026
(0.071) (0.268) (0.071) (0.114) (0.031)

45-54 0.072 0.263 0.070 0.097 0.034
(0.072) (0.269) (0.072) (0.110) (0.029)

55-65 0.022 0.081 0.020 -0.030 0.013
(0.057) (0.214) (0.057) (0.091) (0.023)

Note: The data is from the 1996-2010 HCUPNIS. This table presents estimates of the effects of robot
exposure on log of 1 plus hospitalizations with specific conditions by age group. All models include
the full set of controls, and are weighted by the population in age group×sex cells within CZs.
Standard errors in parentheses are clustered at the CZ level. p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.9: Discharges by Race and Sex
Alternative Estimation and Automation Measures

(1) (2) (3) (4) (5)
Baseline 2SLS All industry 1990 shares EURO9

Total admissions White 0.117∗∗∗ 0.396∗∗ 0.116∗∗ 0.144∗ 0.027
(0.045) (0.199) (0.045) (0.080) (0.022)

Non-white -0.110 -0.408 -0.114 -0.208∗ -0.058∗
(0.072) (0.279) (0.071) (0.121) (0.031)

Men -0.057∗ -0.215∗ -0.059∗ -0.133∗∗∗ -0.030∗∗
(0.032) (0.125) (0.032) (0.051) (0.013)

Women -0.013 -0.050 -0.015 -0.038 -0.016
(0.027) (0.103) (0.027) (0.041) (0.011)

Injury White 0.041 0.139 0.040 0.031 0.004
(0.052) (0.187) (0.053) (0.087) (0.027)

Non-white -0.160 -0.593∗ -0.166 -0.335∗ -0.068
(0.102) (0.333) (0.103) (0.183) (0.045)

Men -0.177∗∗∗ -0.664∗∗∗ -0.179∗∗∗ -0.319∗∗∗ -0.070∗∗∗
(0.043) (0.176) (0.043) (0.066) (0.021)

Women -0.122∗∗∗ -0.459∗∗∗ -0.123∗∗∗ -0.192∗∗∗ -0.050∗∗
(0.039) (0.146) (0.039) (0.064) (0.020)

Mental disorders White 0.128∗∗ 0.434∗∗ 0.128∗∗ 0.172∗ 0.035
(0.058) (0.219) (0.058) (0.100) (0.027)

Non-white -0.208∗∗ -0.772∗ -0.210∗∗ -0.335∗ -0.077∗
(0.097) (0.461) (0.096) (0.174) (0.040)

Men -0.100∗∗ -0.377∗ -0.102∗∗ -0.184∗∗ -0.040∗∗
(0.050) (0.206) (0.051) (0.084) (0.018)

Women -0.043 -0.162 -0.043 -0.067 -0.022
(0.049) (0.191) (0.049) (0.079) (0.018)

Despair-related White 0.050 0.169 0.046 -0.001 0.012
(0.067) (0.229) (0.067) (0.113) (0.027)

Non-white -0.345∗∗∗ -1.281∗∗ -0.349∗∗∗ -0.580∗∗∗ -0.116∗∗∗
(0.108) (0.570) (0.107) (0.199) (0.042)

Men -0.117∗∗ -0.439∗∗ -0.121∗∗ -0.247∗∗∗ -0.036
(0.053) (0.223) (0.053) (0.085) (0.023)

Women -0.024 -0.089 -0.024 -0.066 -0.011
(0.060) (0.231) (0.061) (0.096) (0.026)

Note: The data is from the 1996-2010 HCUP NIS. This table presents estimates of the effects of industrial
robot exposure on the log of 1 plus the number of hospitalizations with specific conditions for each race
and sex. All models include the full set of controls and fixed effects. All regressions are weighted by the
population in cohort × sex cells within CZs. Standard errors clustered at the CZ level are in parentheses.
p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.10: Automation and Workplace Injuries
OLS Estimation

(1) (2) (3) (4)
All nonfatal injuries -0.811∗∗∗ -0.762∗∗∗ -0.604∗∗∗ -0.599∗∗∗

(0.133) (0.166) (0.135) (0.134)

All fatal injuries 0.126 0.062 0.166 0.149
(0.094) (0.098) (0.140) (0.134)

Demographics X X X
Macroeconomic controls X X
Import penetration X
Observations 495 495 495 495
States 33 33 33 33
Note: The data is from the 1996-2010 SOII and CFOI. This table presents OLS esti-
mates of the effects of industrial robot exposure on nonfatal injury incidence per 100
FTE workers and on fatal injury incidence per 100,000 FTE workers. All regressions
are weighted by the state employment. Standard errors are clustered at the state
level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.11: Automation and Hospitalization by Cause
OLS Estimation

(1) (2) (3)

Total admissions -0.058∗∗ -0.049 -0.051∗
(0.028) (0.031) (0.029)

Injury -0.066∗ -0.078∗∗ -0.079∗∗
(0.039) (0.036) (0.035)

Backache -0.173∗∗∗ -0.149∗∗∗ -0.150∗∗∗
(0.039) (0.044) (0.044)

Mental disorders -0.022 -0.002 -0.004
(0.030) (0.031) (0.029)

Despair-related -0.047 -0.038 -0.041
(0.039) (0.041) (0.037)

Alcohol abuse -0.077∗ -0.089∗∗ -0.091∗∗
(0.043) (0.045) (0.042)

Substance abuse -0.045 -0.012 -0.015
(0.045) (0.049) (0.044)

Opioid abuse -0.057 -0.012 -0.015
(0.060) (0.064) (0.061)

Suicide attempt -0.104∗∗ -0.062 -0.064
(0.047) (0.050) (0.047)

Demographics X X X
Macroeconomic controls X X X
Import penetration X X
Log population X
Observations 90,862 90,862 90,862
CZs 376 376 376

Note: The data is from the 1996-2010 HCUP NIS. This table
presents OLS estimates of the effects of industrial robot exposure
on the log of 1 plus the number of hospitalizations with specific
conditions. All models include fixed effects for cohort × sex cells,
hospitals, and year. All regressions are weighted by the population
in cohort × sex cells within CZs. Standard errors clustered at the
CZ level are in parentheses. p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A.3.2 Alternative Sample

As noted in Section 2, data on nonfatal injuries are unavailable for certain states in specific
years. To ensure consistency, our baseline analysis uses a balanced panel of 33 states. In
Tables A.12 and A.13, we presents estimation results using all available states. Tables A.12
and A.13 demonstrate that our estimates of the impact of industrial robot exposure on
workplace injuries in Tables 4 and 5 are robust to the sample choice.

Table A.12: Automation and Nonfatal Workplace Injuries
All Available States

(1) (2) (3) (4) Mean
All nonfatal injuries -0.460∗∗∗ -0.425∗∗∗ -0.293∗∗∗ -0.295∗∗∗ 5.101

(0.072) (0.075) (0.076) (0.074)
Nonfatal injuries by type
Injury w/o lost workdays -0.218∗∗∗ -0.201∗∗∗ -0.134∗∗ -0.135∗∗ 2.533

(0.051) (0.054) (0.053) (0.052)

Injury w / days of -0.189∗∗∗ -0.174∗∗∗ -0.142∗∗∗ -0.142∗∗∗ 1.038
job transfer or restriction (0.027) (0.029) (0.026) (0.026)

Injury w / days away from work -0.051∗ -0.054∗ -0.038 -0.039 1.531
(0.030) (0.031) (0.032) (0.028)

Demographics X X X
Industry shares X X
Import penetration X
Observations 621 621 621 621
States 43 43 43 43
Note: The data is from the 1996-2010 SOII. This table presents estimates of the effects of industrial robot
exposure on nonfatal injury incidence per 100 FTE workers. All regressions are weighted by the state
employment. Standard errors clustered at the state level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01

54



Table A.13: Automation and Fatal Workplace Injuries
All Available States

(1) (2) (3) (4) Mean
All fatal injuries 0.219∗∗ 0.176 0.295∗ 0.295∗∗ 4.356

(0.107) (0.112) (0.148) (0.138)
Fatal injuries by source
Tools, instruments, and equipment 0.008 0.005 0.005 0.005 0.073

(0.009) (0.007) (0.007) (0.007)
Machinery -0.017 -0.016 -0.003 -0.003 0.337

(0.013) (0.015) (0.020) (0.020)
Vehicles 0.128∗∗∗ 0.088∗ 0.152∗∗∗ 0.152∗∗∗ 1.893

(0.046) (0.047) (0.056) (0.053)
Parts and materials 0.020∗ 0.024∗ 0.018 0.018 0.278

(0.010) (0.012) (0.016) (0.014)
Containers -0.006 -0.007 -0.005 -0.005 0.039

(0.006) (0.005) (0.007) (0.007)
Structures and surfaces 0.021 0.025 0.044 0.044 0.625

(0.014) (0.019) (0.029) (0.027)
Chemicals and chemical products 0.010 0.008 -0.005 -0.005 0.090

(0.007) (0.008) (0.010) (0.010)
Persons, plants, animals, and minerals 0.029∗∗ 0.032∗∗ 0.032∗ 0.032∗ 0.198

(0.011) (0.012) (0.018) (0.018)

Demographics X X X
Industry shares X X
Import penetration X
Observations 765 765 765 765
States 51 51 51 51
Note: The data is from the 1996-2010 CFOI. This table presents estimates of the effects of industrial robot
exposure on fatal injury incidence per 100,000 FTE workers. All regressions are weighted by state employ-
ment. Standard errors clustered at the state level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

55



To further test whether the results are driven by any individual state or commuting
zone, we conduct additional robustness analyses.

In Figure A.3, we present the results of leave-one-out analysis for the workplace injury
regressions to confirm the robustness of our findings presented in Tables 4 and 5. Specif-
ically, we re-estimate Equation (2) with one state excluded at a time. The estimates are
robust to excluded states, with the exception of Michigan. However, the broad qualitative
finding of a divergence in severity of occupational risks holds: we find a larger decrease
in nonfatal injuries involving days away from work and a larger increase in fatal injuries
due to automation.

For hospitalization analyses, given a large number of CZs, we re-estimate Equation
(3), excluding CZs with highest and/or lowest levels of automation exposure. In column
(2), the analysis omits the top 1% of CZs with the highest average robot exposure during
1996–2010, whereas column (3) excludes the bottom 1% with the lowest exposure. Col-
umn (4) removes both the top and bottom 1% of CZs. Compared to the baseline estimates
in column (1), excluding outliers do not have a significant impact on our qualitative and
quantitative findings.
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Figure A.3: Leave-one-out Test for Workplace Injuries

(a) All nonfatal injuries
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(c) Nonfatal w/ days of job transfer and restriction
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(d) Nonfatal w/ days away from work
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(e) All fatal injuries
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Note: The data is from the 1996-2010 SOII and CFOI. This figure presents the estimates from the
leave-one-out test for the effects of industrial robot exposure on nonfatal and fatal workplace injury rates
90% confidence intervals. All models include the full set of controls and fixed effects. All regressions are
weighted by the state employment. Standard errors are clustered at the state level.
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Table A.14: Automation and Hospitalization by Cause
Excluding Outliers

(1) (2) (3) (4)

Baseline Excl.
high exposure

Excl.
low exposure

Excl.
high & low

Total admissions -0.043 -0.042 -0.044 -0.043
(0.030) (0.031) (0.030) (0.031)

Injury -0.160∗∗∗ -0.178∗∗∗ -0.161∗∗∗ -0.178∗∗∗
(0.040) (0.038) (0.039) (0.038)

Backache -0.031 -0.043 -0.033 -0.045
(0.034) (0.034) (0.033) (0.034)

Mental disorders -0.083∗ -0.091∗ -0.085∗ -0.093∗
(0.050) (0.053) (0.051) (0.053)

Despair-related -0.074 -0.084 -0.075 -0.084
(0.058) (0.060) (0.057) (0.060)

Alcohol abuse -0.123∗∗ -0.137∗∗ -0.123∗∗ -0.137∗∗
(0.054) (0.055) (0.054) (0.056)

Substance abuse -0.080 -0.098 -0.081 -0.099∗
(0.060) (0.061) (0.059) (0.060)

Opioid abuse 0.048 0.039 0.047 0.039
(0.068) (0.071) (0.067) (0.070)

Suicide attempt 0.023 0.011 0.025 0.012
(0.060) (0.062) (0.059) (0.061)

Observations 90,862 89,744 90,169 89,051
CZs 376 372 372 368

Note: The data is from the 1996-2010 HCUP NIS. This table presents estimates of the
effects of industrial robot exposure on the log of 1 plus the number of hospitalizations
with specific conditions. Column (2) shows the regression estimates excluding 1% of
CZs with the highest robot exposure, Column (3) shows the regression estimates ex-
cluding 1% of CZs with the lowest robot exposure, and Column (4) shows the regres-
sion estimates excluding 1% of CZs with the highest and lowest robot exposure. All
models include the full set of controls and fixed effects. All regressions are weighted
by the population in cohort× sex cells within CZs. Standard errors clustered at the CZ
level are in parentheses. p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

58


	Introduction
	Data 
	Industrial Robots: IFR
	Nonfatal Workplace Injuries: SOII
	Fatal Workplace Injuries: CFOI
	Hospital Discharge by Diagnoses: HCUP NIS
	Descriptive Statistics of Outcome Variables

	Empirical Analysis 
	Results 
	Automation and Nonfatal Occupational Injuries
	Automation and Fatal Occupational Injuries
	Automation and Hospitalizations
	Robustness Analyses

	Discussion
	Quantifying the Occupational Injury Effects of Automation
	Implications for Policy

	Conclusion 
	Additional Data Details
	Automation in the US and EURO5
	CFOI: Source of Injury
	NIS: Diagnosis Definitions and Summary Statistics

	Additional Empirical Results
	States and Commuting Zone Characteristics
	Fatal Workplace Injuries by Event
	Hospitalization by Diagnoses

	Robustness Checks 
	Alternative Estimation and Automation Measures
	Alternative Sample


